import gradio as gr from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer # Define the model name MODEL_NAME = "impresso-project/ner-stacked-bert-multilingual" # Load the tokenizer and model using the pipeline ner_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) ner_pipeline = pipeline( "generic-ner", model=MODEL_NAME, tokenizer=ner_tokenizer, trust_remote_code=True, device="cpu", ) # Helper function to flatten entities and prepare them for HighlightedText def prepare_entities_for_highlight(text, results): entities = [] for category, entity_list in results.items(): for entity in entity_list: # Appending each entity's word, start and end for highlighting, including the entity label and score entities.append( { "start": entity["start"], "end": entity["end"], "label": f"{entity['entity']} ({entity['score']:.2f}%)", } ) return {"text": text, "entities": entities} # Function to process the sentence and extract entities def extract_entities(sentence): results = ner_pipeline(sentence) # Format the results for HighlightedText return prepare_entities_for_highlight(sentence, results) # Create Gradio interface def ner_app_interface(): input_sentence = gr.Textbox( lines=5, label="Input Sentence", placeholder="Enter a sentence for NER..." ) output_entities = gr.HighlightedText(label="Extracted Entities") # Interface definition interface = gr.Interface( fn=extract_entities, inputs=input_sentence, outputs=output_entities, title="Named Entity Recognition", description="Enter a sentence to extract named entities using the NER model from the Impresso project.", examples=[ [ "In the year 1789, King Louis XVI, ruler of France, convened the Estates-General at the Palace of Versailles." ] ], live=False, ) interface.launch(share=True) # Run the app if __name__ == "__main__": ner_app_interface()