emanuelaboros commited on
Commit
048754e
Β·
1 Parent(s): f36584d

changed the loading of the model

Browse files
Files changed (1) hide show
  1. app.py +23 -24
app.py CHANGED
@@ -1,11 +1,24 @@
1
  import gradio as gr
 
2
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
  import requests
4
 
5
- tokenizer = AutoTokenizer.from_pretrained("impresso-project/nel-hipe-multilingual")
6
- model = AutoModelForSeq2SeqLM.from_pretrained(
7
- "impresso-project/nel-hipe-multilingual"
8
- ).eval()
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  print("Model loaded successfully!")
11
 
@@ -83,29 +96,15 @@ def get_wikipedia_title(qid, language="en"):
83
 
84
  def disambiguate_sentence(sentence):
85
  # Generate model outputs for the sentence
86
- outputs = model.generate(
87
- **tokenizer([sentence], return_tensors="pt"),
88
- num_beams=5,
89
- num_return_sequences=5,
90
- max_new_tokens=30,
91
- )
92
- decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)
93
- print(f"Decoded: {decoded}")
94
- wikipedia_name = decoded[0] # Assuming the entity name is in the output
95
- qid = get_wikipedia_page_props(wikipedia_name)
96
- print(f"QID: {qid}")
97
-
98
- # Get Wikipedia title and URL
99
- title, url = get_wikipedia_title(qid)
100
 
101
- if qid == "NIL":
102
- return "No entity found."
103
 
104
  # Create an HTML output with a clickable link
105
  entity_info = f"""<div>
106
- <strong>Entity:</strong> {title} <br>
107
- <strong>QID:</strong> {qid} <br>
108
- <a href="{url}" target="_blank">Wikipedia Page</a>
109
  </div>
110
  """
111
  return entity_info
@@ -117,7 +116,7 @@ def nel_app_interface():
117
  label="Input Sentence",
118
  placeholder="Enter your sentence here:",
119
  )
120
- output_entities = gr.HTML(label="Linked Entity")
121
 
122
  # Interface definition
123
  interface = gr.Interface(
 
1
  import gradio as gr
2
+ from transformers import pipeline
3
  from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
4
  import requests
5
 
6
+
7
+ NEL_MODEL_NAME = "impresso-project/nel-mgenre-multilingual"
8
+
9
+ # Load the tokenizer and model from the specified pre-trained model name
10
+ # The model used here is "https://huggingface.co/impresso-project/nel-mgenre-multilingual"
11
+ nel_tokenizer = AutoTokenizer.from_pretrained(
12
+ "impresso-project/nel-mgenre-multilingual"
13
+ )
14
+
15
+ nel_pipeline = pipeline(
16
+ "generic-nel",
17
+ model=NEL_MODEL_NAME,
18
+ tokenizer=nel_tokenizer,
19
+ trust_remote_code=True,
20
+ device="cpu",
21
+ )
22
 
23
  print("Model loaded successfully!")
24
 
 
96
 
97
  def disambiguate_sentence(sentence):
98
  # Generate model outputs for the sentence
99
+ linked_entity = nel_pipeline(sentence)
 
 
 
 
 
 
 
 
 
 
 
 
 
100
 
101
+ linked_entity = linked_entity[0]
 
102
 
103
  # Create an HTML output with a clickable link
104
  entity_info = f"""<div>
105
+ <strong>Entity:</strong> {linked_entity['title']} <br>
106
+ <strong>QID:</strong> {linked_entity['qid']} <br>
107
+ <a href="{linked_entity['url']}" target="_blank">Wikipedia Page</a>
108
  </div>
109
  """
110
  return entity_info
 
116
  label="Input Sentence",
117
  placeholder="Enter your sentence here:",
118
  )
119
+ output_entities = gr.HTML(label="Linked Entities:")
120
 
121
  # Interface definition
122
  interface = gr.Interface(