Commit
Β·
048754e
1
Parent(s):
f36584d
changed the loading of the model
Browse files
app.py
CHANGED
@@ -1,11 +1,24 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import requests
|
4 |
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
print("Model loaded successfully!")
|
11 |
|
@@ -83,29 +96,15 @@ def get_wikipedia_title(qid, language="en"):
|
|
83 |
|
84 |
def disambiguate_sentence(sentence):
|
85 |
# Generate model outputs for the sentence
|
86 |
-
|
87 |
-
**tokenizer([sentence], return_tensors="pt"),
|
88 |
-
num_beams=5,
|
89 |
-
num_return_sequences=5,
|
90 |
-
max_new_tokens=30,
|
91 |
-
)
|
92 |
-
decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
93 |
-
print(f"Decoded: {decoded}")
|
94 |
-
wikipedia_name = decoded[0] # Assuming the entity name is in the output
|
95 |
-
qid = get_wikipedia_page_props(wikipedia_name)
|
96 |
-
print(f"QID: {qid}")
|
97 |
-
|
98 |
-
# Get Wikipedia title and URL
|
99 |
-
title, url = get_wikipedia_title(qid)
|
100 |
|
101 |
-
|
102 |
-
return "No entity found."
|
103 |
|
104 |
# Create an HTML output with a clickable link
|
105 |
entity_info = f"""<div>
|
106 |
-
<strong>Entity:</strong> {title} <br>
|
107 |
-
<strong>QID:</strong> {qid} <br>
|
108 |
-
<a href="{url}" target="_blank">Wikipedia Page</a>
|
109 |
</div>
|
110 |
"""
|
111 |
return entity_info
|
@@ -117,7 +116,7 @@ def nel_app_interface():
|
|
117 |
label="Input Sentence",
|
118 |
placeholder="Enter your sentence here:",
|
119 |
)
|
120 |
-
output_entities = gr.HTML(label="Linked
|
121 |
|
122 |
# Interface definition
|
123 |
interface = gr.Interface(
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
4 |
import requests
|
5 |
|
6 |
+
|
7 |
+
NEL_MODEL_NAME = "impresso-project/nel-mgenre-multilingual"
|
8 |
+
|
9 |
+
# Load the tokenizer and model from the specified pre-trained model name
|
10 |
+
# The model used here is "https://huggingface.co/impresso-project/nel-mgenre-multilingual"
|
11 |
+
nel_tokenizer = AutoTokenizer.from_pretrained(
|
12 |
+
"impresso-project/nel-mgenre-multilingual"
|
13 |
+
)
|
14 |
+
|
15 |
+
nel_pipeline = pipeline(
|
16 |
+
"generic-nel",
|
17 |
+
model=NEL_MODEL_NAME,
|
18 |
+
tokenizer=nel_tokenizer,
|
19 |
+
trust_remote_code=True,
|
20 |
+
device="cpu",
|
21 |
+
)
|
22 |
|
23 |
print("Model loaded successfully!")
|
24 |
|
|
|
96 |
|
97 |
def disambiguate_sentence(sentence):
|
98 |
# Generate model outputs for the sentence
|
99 |
+
linked_entity = nel_pipeline(sentence)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
linked_entity = linked_entity[0]
|
|
|
102 |
|
103 |
# Create an HTML output with a clickable link
|
104 |
entity_info = f"""<div>
|
105 |
+
<strong>Entity:</strong> {linked_entity['title']} <br>
|
106 |
+
<strong>QID:</strong> {linked_entity['qid']} <br>
|
107 |
+
<a href="{linked_entity['url']}" target="_blank">Wikipedia Page</a>
|
108 |
</div>
|
109 |
"""
|
110 |
return entity_info
|
|
|
116 |
label="Input Sentence",
|
117 |
placeholder="Enter your sentence here:",
|
118 |
)
|
119 |
+
output_entities = gr.HTML(label="Linked Entities:")
|
120 |
|
121 |
# Interface definition
|
122 |
interface = gr.Interface(
|