Spaces:
Runtime error
Runtime error
Commit
·
9bc71fd
1
Parent(s):
73bfdef
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
-
import gradio as gr
|
2 |
from speechbrain.pretrained.interfaces import foreign_class
|
|
|
3 |
import os
|
|
|
|
|
4 |
|
5 |
# Function to get the list of audio files in the 'rec/' directory
|
6 |
def get_audio_files_list(directory="rec"):
|
@@ -13,13 +15,13 @@ def get_audio_files_list(directory="rec"):
|
|
13 |
# Loading the speechbrain emotion detection model
|
14 |
learner = foreign_class(
|
15 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
16 |
-
pymodule_file="custom_interface.py",
|
17 |
classname="CustomEncoderWav2vec2Classifier"
|
18 |
)
|
19 |
|
20 |
# Building prediction function for Gradio
|
21 |
emotion_dict = {
|
22 |
-
'sad': 'Sad',
|
23 |
'hap': 'Happy',
|
24 |
'ang': 'Anger',
|
25 |
'fea': 'Fear',
|
@@ -27,29 +29,21 @@ emotion_dict = {
|
|
27 |
'neu': 'Neutral'
|
28 |
}
|
29 |
|
30 |
-
def selected_audio
|
31 |
-
|
32 |
-
return None, "Please select an audio file."
|
33 |
-
file_path = os.path.join("rec", audio_file)
|
34 |
-
audio_data = gr.Audio(file=file_path)
|
35 |
out_prob, score, index, text_lab = learner.classify_file(file_path)
|
36 |
emotion = emotion_dict[text_lab[0]]
|
37 |
-
return
|
38 |
|
39 |
# Get the list of audio files for the dropdown
|
40 |
audio_files_list = get_audio_files_list()
|
41 |
|
42 |
-
#
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
detect_btn = gr.Button("Detect Emotion")
|
52 |
-
detect_btn.click(selected_audio, inputs=input_audio_dropdown, outputs=[audio_ui, output_text])
|
53 |
-
|
54 |
-
# Launch the Gradio blocks interface
|
55 |
-
blocks.launch()
|
|
|
|
|
1 |
from speechbrain.pretrained.interfaces import foreign_class
|
2 |
+
import gradio as gr
|
3 |
import os
|
4 |
+
import warnings
|
5 |
+
warnings.filterwarnings("ignore")
|
6 |
|
7 |
# Function to get the list of audio files in the 'rec/' directory
|
8 |
def get_audio_files_list(directory="rec"):
|
|
|
15 |
# Loading the speechbrain emotion detection model
|
16 |
learner = foreign_class(
|
17 |
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
18 |
+
pymodule_file="custom_interface.py",
|
19 |
classname="CustomEncoderWav2vec2Classifier"
|
20 |
)
|
21 |
|
22 |
# Building prediction function for Gradio
|
23 |
emotion_dict = {
|
24 |
+
'sad': 'Sad',
|
25 |
'hap': 'Happy',
|
26 |
'ang': 'Anger',
|
27 |
'fea': 'Fear',
|
|
|
29 |
'neu': 'Neutral'
|
30 |
}
|
31 |
|
32 |
+
def predict_emotion(selected_audio):
|
33 |
+
file_path = os.path.join("rec", selected_audio)
|
|
|
|
|
|
|
34 |
out_prob, score, index, text_lab = learner.classify_file(file_path)
|
35 |
emotion = emotion_dict[text_lab[0]]
|
36 |
+
return emotion, file_path # Return both emotion and file path
|
37 |
|
38 |
# Get the list of audio files for the dropdown
|
39 |
audio_files_list = get_audio_files_list()
|
40 |
|
41 |
+
# Loading Gradio interface
|
42 |
+
inputs = gr.Dropdown(label="Select Audio", choices=audio_files_list)
|
43 |
+
outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")]
|
44 |
+
|
45 |
+
title = "ML Speech Emotion Detection3"
|
46 |
+
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
|
47 |
+
|
48 |
+
interface = gr.Interface(fn=predict_emotion, inputs=inputs, outputs=outputs, title=title, description=description)
|
49 |
+
interface.launch()
|
|
|
|
|
|
|
|
|
|