Spaces:
Runtime error
Runtime error
Commit
·
61534cc
1
Parent(s):
9a533bd
Upload app2.py
Browse files
app2.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
warnings.filterwarnings("ignore")
|
7 |
+
|
8 |
+
# Loading the speechbrain emotion detection model
|
9 |
+
learner = foreign_class(
|
10 |
+
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
|
11 |
+
pymodule_file="custom_interface.py",
|
12 |
+
classname="CustomEncoderWav2vec2Classifier"
|
13 |
+
)
|
14 |
+
|
15 |
+
# Building prediction function for gradio
|
16 |
+
emotion_dict = {
|
17 |
+
'sad': 'Sad',
|
18 |
+
'hap': 'Happy',
|
19 |
+
'ang': 'Anger',
|
20 |
+
'fea': 'Fear',
|
21 |
+
'sur': 'Surprised',
|
22 |
+
'neu': 'Neutral'
|
23 |
+
}
|
24 |
+
|
25 |
+
def predict_emotion(file_path):
|
26 |
+
# Since we get the file path from the dropdown, we don't need to access the `.name` property
|
27 |
+
out_prob, score, index, text_lab = learner.classify_file(file_path)
|
28 |
+
return emotion_dict[text_lab[0]]
|
29 |
+
|
30 |
+
# Folder containing audio files
|
31 |
+
folder = "prerecorded"
|
32 |
+
|
33 |
+
# Assuming that the 'prerecorded' folder is in the current working directory
|
34 |
+
# Change the working directory path if necessary
|
35 |
+
audio_files = [os.path.join(folder, file) for file in os.listdir(folder) if file.endswith('.wav')]
|
36 |
+
|
37 |
+
# Loading gradio interface with dropdown for audio selection
|
38 |
+
inputs = gr.inputs.Dropdown(audio_files, label="Select Audio File")
|
39 |
+
outputs = "text"
|
40 |
+
title = "Machine Learning Emotion Detection"
|
41 |
+
description = "Gradio demo for Emotion Detection. To use it, select an audio file from the dropdown and click 'Submit'. Read more at the links below."
|
42 |
+
gr.Interface(predict_emotion, inputs, outputs, title=title, description=description).launch()
|