seikin_alexey
app2
595bf80
raw
history blame
1.9 kB
import gradio as gr
from speechbrain.pretrained.interfaces import foreign_class
import os
# Function to get the list of audio files in the 'rec/' directory
def get_audio_files_list(directory="rec"):
try:
return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
except FileNotFoundError:
print("The 'rec' directory does not exist. Please make sure it is the correct path.")
return []
# Loading the speechbrain emotion detection model
learner = foreign_class(
source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
pymodule_file="custom_interface.py",
classname="CustomEncoderWav2vec2Classifier"
)
# Building prediction function for Gradio
emotion_dict = {
'sad': 'Sad',
'hap': 'Happy',
'ang': 'Anger',
'fea': 'Fear',
'sur': 'Surprised',
'neu': 'Neutral'
}
def selected_audio(audio_file):
if audio_file is None:
return None, "Please select an audio file."
file_path = os.path.join("rec", audio_file)
audio_data = gr.Audio(file=file_path)
out_prob, score, index, text_lab = learner.classify_file(file_path)
emotion = emotion_dict[text_lab[0]]
return audio_data, emotion
# Get the list of audio files for the dropdown
audio_files_list = get_audio_files_list()
# Define Gradio blocks
with gr.Blocks() as blocks:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>" +
"Audio Emotion Detection" +
"</h1>")
with gr.Column():
input_audio_dropdown = gr.Dropdown(label="Select Audio", choices=audio_files_list)
audio_ui = gr.Audio()
output_text = gr.Textbox(label="Detected Emotion!")
detect_btn = gr.Button("Detect Emotion")
detect_btn.click(selected_audio, inputs=input_audio_dropdown, outputs=[audio_ui, output_text])
# Launch the Gradio blocks interface
blocks.launch()