File size: 2,134 Bytes
4745aa4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
from speechbrain.pretrained.interfaces import foreign_class
import gradio as gr
import os
import warnings
warnings.filterwarnings("ignore")

# Function to get the list of audio files in the 'rec/' directory
def get_audio_files_list(directory="rec"):
    try:
        return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
    except FileNotFoundError:
        print("The 'rec' directory does not exist. Please make sure it is the correct path.")
        return []

# Loading the speechbrain emotion detection model
learner = foreign_class(
    source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
    pymodule_file="custom_interface.py", 
    classname="CustomEncoderWav2vec2Classifier"
)

# Building prediction function for Gradio
emotion_dict = {
    'sad': 'Sad', 
    'hap': 'Happy',
    'ang': 'Anger',
    'fea': 'Fear',
    'sur': 'Surprised',
    'neu': 'Neutral'
}

def predict_emotion(selected_audio):
    if selected_audio is None:  # Check if an audio file is selected
        return "Please select an audio file.", None
    file_path = os.path.join("rec", selected_audio)
    out_prob, score, index, text_lab = learner.classify_file(file_path)
    emotion = emotion_dict[text_lab[0]]
    return emotion, file_path  # Return both emotion and file path

# Get the list of audio files for the dropdown
audio_files_list = get_audio_files_list()

# Loading Gradio interface
dropdown = gr.Dropdown(label="Select Audio", choices=audio_files_list)
button = gr.Button("Detect emotion")
outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")]

def button_click(selected_audio):
    return predict_emotion(selected_audio)  # Call predict_emotion when button is clicked

title = "ML Speech Emotion Detection"
description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."

# Create the Gradio interface
interface = gr.Interface(
    fn=button_click,  # Use the button_click function for the interface
    inputs=[dropdown, button],
    outputs=outputs,
    title=title,
    description=description
)

interface.launch()