"""import gradio as gr from transformers import pipeline import fitz # PyMuPDF import docx import pptx import openpyxl import os from fastapi import FastAPI from fastapi.responses import RedirectResponse # Load your custom summarization model pipe = pipeline("summarization", model="facebook/bart-large-cnn", tokenizer="facebook/bart-large-cnn") # Document text extraction function def extract_text(file): ext = file.name.split(".")[-1].lower() path = file.name if ext == "pdf": try: with fitz.open(path) as doc: return "\n".join([page.get_text("text") for page in doc]) except Exception as e: return f"Error reading PDF: {e}" elif ext == "docx": try: doc = docx.Document(path) return "\n".join([p.text for p in doc.paragraphs]) except Exception as e: return f"Error reading DOCX: {e}" elif ext == "pptx": try: prs = pptx.Presentation(path) text = "" for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text += shape.text + "\n" return text except Exception as e: return f"Error reading PPTX: {e}" elif ext == "xlsx": try: wb = openpyxl.load_workbook(path) text = "" for sheet in wb.sheetnames: for row in wb[sheet].iter_rows(values_only=True): text += " ".join([str(cell) for cell in row if cell]) + "\n" return text except Exception as e: return f"Error reading XLSX: {e}" else: return "Unsupported file format" # Summarization logic def summarize_document(file): text = extract_text(file) if "Error" in text or "Unsupported" in text: return text word_count = len(text.split()) max_summary_len = max(20, int(word_count * 0.2)) try: summary = pipe(text, max_length=max_summary_len, min_length=int(max_summary_len * 0.6), do_sample=False) # Print the summary to debug its structure print(summary) return summary[0]['summary_text'] # Access the correct key for the output except Exception as e: return f"Error during summarization: {e}" # Gradio Interface demo = gr.Interface( fn=summarize_document, inputs=gr.File(label="Upload a document (PDF, DOCX, PPTX, XLSX)", file_types=[".pdf", ".docx", ".pptx", ".xlsx"]), outputs=gr.Textbox(label="20% Summary"), title="📄 Document Summarizer (20% Length)", description="Upload a document and get a concise summary generated by your custom Hugging Face model." ) # FastAPI setup app = FastAPI() # Mount Gradio at "/" app = gr.mount_gradio_app(app, demo, path="/") # Optional root redirect @app.get("/") def redirect_to_interface(): return RedirectResponse(url="/")""" import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM import fitz # PyMuPDF import docx import pptx import openpyxl import re import nltk from nltk.tokenize import sent_tokenize import torch from fastapi import FastAPI from fastapi.responses import RedirectResponse # Download required NLTK data nltk.download('punkt', quiet=True) # Initialize components app = FastAPI() # Load summarization model (CPU optimized) MODEL_NAME = "facebook/bart-large-cnn" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME) summarizer = pipeline( "summarization", model=model, tokenizer=tokenizer, device=-1, # Force CPU usage torch_dtype=torch.float32 ) def clean_text(text: str) -> str: """Clean and normalize document text""" text = re.sub(r'\s+', ' ', text) # Normalize whitespace text = re.sub(r'•\s*|\d\.\s+', '', text) # Remove bullets and numbering text = re.sub(r'\[.*?\]|\(.*?\)', '', text) # Remove brackets/parentheses text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE) # Remove page numbers return text.strip() def extract_text(file_path: str, file_extension: str) -> tuple[str, str]: """Extract text from various document formats""" try: if file_extension == "pdf": with fitz.open(file_path) as doc: return clean_text("\n".join(page.get_text("text") for page in doc)), "" elif file_extension == "docx": doc = docx.Document(file_path) return clean_text("\n".join(p.text for p in doc.paragraphs)), "" elif file_extension == "pptx": prs = pptx.Presentation(file_path) text = [] for slide in prs.slides: for shape in slide.shapes: if hasattr(shape, "text"): text.append(shape.text) return clean_text("\n".join(text)), "" elif file_extension == "xlsx": wb = openpyxl.load_workbook(file_path, read_only=True) text = [] for sheet in wb.sheetnames: for row in wb[sheet].iter_rows(values_only=True): text.append(" ".join(str(cell) for cell in row if cell)) return clean_text("\n".join(text)), "" return "", "Unsupported file format" except Exception as e: return "", f"Error reading {file_extension.upper()} file: {str(e)}" def chunk_text(text: str, max_tokens: int = 768) -> list[str]: """Split text into manageable chunks for summarization""" try: sentences = sent_tokenize(text) except: # Fallback if sentence tokenization fails words = text.split() sentences = [' '.join(words[i:i+20]) for i in range(0, len(words), 20)] chunks = [] current_chunk = "" for sentence in sentences: if len(current_chunk.split()) + len(sentence.split()) <= max_tokens: current_chunk += " " + sentence else: chunks.append(current_chunk.strip()) current_chunk = sentence if current_chunk: chunks.append(current_chunk.strip()) return chunks def generate_summary(text: str, length: str = "medium") -> str: """Generate summary with appropriate length parameters""" length_params = { "short": {"max_length": 80, "min_length": 30}, "medium": {"max_length": 150, "min_length": 60}, "long": {"max_length": 200, "min_length": 80} } chunks = chunk_text(text) summaries = [] for chunk in chunks: try: summary = summarizer( chunk, max_length=length_params[length]["max_length"], min_length=length_params[length]["min_length"], do_sample=False, truncation=True, no_repeat_ngram_size=2, num_beams=2, early_stopping=True ) summaries.append(summary[0]['summary_text']) except Exception as e: summaries.append(f"[Chunk error: {str(e)}]") # Combine and format the final summary final_summary = " ".join(summaries) final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip()) return final_summary if len(final_summary) > 25 else "Summary too short - document may be too brief" def summarize_document(file, summary_length: str): """Main processing function for Gradio interface""" if file is None: return "Please upload a document first", "Ready" file_path = file.name file_extension = file_path.split(".")[-1].lower() text, error = extract_text(file_path, file_extension) if error: return error, "Error" if not text or len(text.split()) < 30: return "Document is too short or contains too little text to summarize", "Ready" try: summary = generate_summary(text, summary_length) return summary, "Summary complete" except Exception as e: return f"Summarization error: {str(e)}", "Error" # Gradio Interface with gr.Blocks(title="Document Summarizer", theme=gr.themes.Soft()) as demo: gr.Markdown("# 📄 Document Summarizer") gr.Markdown("Upload a document to generate a concise summary") with gr.Row(): with gr.Column(): file_input = gr.File( label="Upload Document", file_types=[".pdf", ".docx", ".pptx", ".xlsx"], type="filepath" ) length_radio = gr.Radio( ["short", "medium", "long"], value="medium", label="Summary Length" ) submit_btn = gr.Button("Generate Summary", variant="primary") with gr.Column(): output = gr.Textbox(label="Summary", lines=10) status = gr.Textbox(label="Status", interactive=False) submit_btn.click( fn=summarize_document, inputs=[file_input, length_radio], outputs=[output, status], api_name="summarize" ) # Mount Gradio app to FastAPI app = gr.mount_gradio_app(app, demo, path="/") @app.get("/") def redirect_to_interface(): return RedirectResponse(url="/")