Spaces:
Sleeping
Sleeping
Update Summarization/app.py
Browse files- Summarization/app.py +0 -142
Summarization/app.py
CHANGED
@@ -1,145 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
-
"""from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
-
import fitz, docx, pptx, openpyxl, re, nltk, tempfile, os, easyocr, datetime, hashlib
|
4 |
-
from nltk.tokenize import sent_tokenize
|
5 |
-
from fpdf import FPDF
|
6 |
-
from gtts import gTTS
|
7 |
-
|
8 |
-
nltk.download('punkt', quiet=True)
|
9 |
-
|
10 |
-
# Load models
|
11 |
-
MODEL_NAME = "facebook/bart-large-cnn"
|
12 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
13 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
14 |
-
model.eval()
|
15 |
-
summarizer = pipeline("summarization", model=model, tokenizer=tokenizer, device=-1, batch_size=4)
|
16 |
-
reader = easyocr.Reader(['en'], gpu=False)
|
17 |
-
|
18 |
-
summary_cache = {}
|
19 |
-
|
20 |
-
def clean_text(text: str) -> str:
|
21 |
-
text = re.sub(r'\s+', ' ', text)
|
22 |
-
text = re.sub(r'\u2022\s*|\d\.\s+', '', text)
|
23 |
-
text = re.sub(r'\[.*?\]|\(.*?\)', '', text)
|
24 |
-
text = re.sub(r'\bPage\s*\d+\b', '', text, flags=re.IGNORECASE)
|
25 |
-
return text.strip()
|
26 |
-
|
27 |
-
def extract_text(file_path: str, ext: str):
|
28 |
-
try:
|
29 |
-
if ext == "pdf":
|
30 |
-
with fitz.open(file_path) as doc:
|
31 |
-
text = "\n".join(page.get_text("text") for page in doc)
|
32 |
-
if len(text.strip()) < 50:
|
33 |
-
images = [page.get_pixmap() for page in doc]
|
34 |
-
temp_img = tempfile.NamedTemporaryFile(suffix=".png", delete=False)
|
35 |
-
images[0].save(temp_img.name)
|
36 |
-
text = "\n".join(reader.readtext(temp_img.name, detail=0))
|
37 |
-
os.unlink(temp_img.name)
|
38 |
-
elif ext == "docx":
|
39 |
-
doc = docx.Document(file_path)
|
40 |
-
text = "\n".join(p.text for p in doc.paragraphs)
|
41 |
-
elif ext == "pptx":
|
42 |
-
prs = pptx.Presentation(file_path)
|
43 |
-
text = "\n".join(shape.text for slide in prs.slides for shape in slide.shapes if hasattr(shape, "text"))
|
44 |
-
elif ext == "xlsx":
|
45 |
-
wb = openpyxl.load_workbook(file_path, read_only=True)
|
46 |
-
text = "\n".join([" ".join(str(cell) for cell in row if cell) for sheet in wb.sheetnames for row in wb[sheet].iter_rows(values_only=True)])
|
47 |
-
else:
|
48 |
-
text = ""
|
49 |
-
except Exception as e:
|
50 |
-
return "", f"Error extracting text: {str(e)}"
|
51 |
-
|
52 |
-
return clean_text(text), ""
|
53 |
-
|
54 |
-
def chunk_text(text: str, max_tokens: int = 950):
|
55 |
-
sentences = sent_tokenize(text)
|
56 |
-
chunks, current_chunk = [], ""
|
57 |
-
for sentence in sentences:
|
58 |
-
if len(tokenizer.encode(current_chunk + " " + sentence)) <= max_tokens:
|
59 |
-
current_chunk += " " + sentence
|
60 |
-
else:
|
61 |
-
chunks.append(current_chunk.strip())
|
62 |
-
current_chunk = sentence
|
63 |
-
if current_chunk:
|
64 |
-
chunks.append(current_chunk.strip())
|
65 |
-
return chunks
|
66 |
-
|
67 |
-
def generate_summary(text: str, length: str = "medium"):
|
68 |
-
cache_key = hashlib.md5((text + length).encode()).hexdigest()
|
69 |
-
if cache_key in summary_cache:
|
70 |
-
return summary_cache[cache_key]
|
71 |
-
|
72 |
-
length_params = {
|
73 |
-
"short": {"max_length": 80, "min_length": 30},
|
74 |
-
"medium": {"max_length": 200, "min_length": 80},
|
75 |
-
"long": {"max_length": 300, "min_length": 210}
|
76 |
-
}
|
77 |
-
|
78 |
-
chunks = chunk_text(text)
|
79 |
-
summaries = summarizer(
|
80 |
-
chunks,
|
81 |
-
max_length=length_params[length]["max_length"],
|
82 |
-
min_length=length_params[length]["min_length"],
|
83 |
-
do_sample=False,
|
84 |
-
truncation=True,
|
85 |
-
no_repeat_ngram_size=2,
|
86 |
-
num_beams=2,
|
87 |
-
early_stopping=True
|
88 |
-
)
|
89 |
-
final_summary = " ".join(s['summary_text'] for s in summaries)
|
90 |
-
final_summary = ". ".join(s.strip().capitalize() for s in final_summary.split(". ") if s.strip())
|
91 |
-
final_summary = final_summary if len(final_summary) > 25 else "Summary too short."
|
92 |
-
|
93 |
-
summary_cache[cache_key] = final_summary
|
94 |
-
return final_summary
|
95 |
-
|
96 |
-
def text_to_speech(text: str):
|
97 |
-
try:
|
98 |
-
tts = gTTS(text)
|
99 |
-
temp_audio = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
100 |
-
tts.save(temp_audio.name)
|
101 |
-
return temp_audio.name
|
102 |
-
except:
|
103 |
-
return ""
|
104 |
-
|
105 |
-
def create_pdf(summary: str, filename: str):
|
106 |
-
try:
|
107 |
-
pdf = FPDF()
|
108 |
-
pdf.add_page()
|
109 |
-
pdf.set_font("Arial", size=12)
|
110 |
-
pdf.multi_cell(0, 10, summary)
|
111 |
-
temp_pdf = tempfile.NamedTemporaryFile(delete=False, suffix=".pdf")
|
112 |
-
pdf.output(temp_pdf.name)
|
113 |
-
return temp_pdf.name
|
114 |
-
except:
|
115 |
-
return ""
|
116 |
-
|
117 |
-
async def summarize_document(file, length="medium"):
|
118 |
-
contents = await file.read()
|
119 |
-
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
120 |
-
tmp_file.write(contents)
|
121 |
-
tmp_path = tmp_file.name
|
122 |
-
|
123 |
-
ext = file.filename.split('.')[-1].lower()
|
124 |
-
text, error = extract_text(tmp_path, ext)
|
125 |
-
|
126 |
-
if error:
|
127 |
-
raise Exception(error)
|
128 |
-
|
129 |
-
if not text or len(text.split()) < 30:
|
130 |
-
raise Exception("Document too short to summarize.")
|
131 |
-
|
132 |
-
summary = generate_summary(text, length)
|
133 |
-
audio_path = text_to_speech(summary)
|
134 |
-
pdf_path = create_pdf(summary, file.filename)
|
135 |
-
|
136 |
-
result = {"summary": summary}
|
137 |
-
if audio_path:
|
138 |
-
result["audioUrl"] = f"/files/{os.path.basename(audio_path)}"
|
139 |
-
if pdf_path:
|
140 |
-
result["pdfUrl"] = f"/files/{os.path.basename(pdf_path)}"
|
141 |
-
return result"""
|
142 |
-
# app.py
|
143 |
|
144 |
from fastapi import UploadFile, File
|
145 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
from fastapi import UploadFile, File
|
3 |
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|