Spaces:
Running
Running
from fastapi import FastAPI | |
from fastapi.responses import RedirectResponse | |
import fitz # PyMuPDF | |
import docx | |
import openpyxl | |
import pptx | |
import io | |
from PIL import Image | |
import gradio as gr | |
from transformers import pipeline | |
# Models | |
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6") | |
image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning") | |
app = FastAPI() | |
# ------------------------- | |
# Document Extraction Utils | |
# ------------------------- | |
def extract_text_from_pdf(file_bytes): | |
text = "" | |
with fitz.open(stream=file_bytes, filetype="pdf") as doc: | |
for page in doc: | |
text += page.get_text() | |
return text | |
def extract_text_from_docx(file_bytes): | |
doc = docx.Document(io.BytesIO(file_bytes)) | |
return "\n".join([para.text for para in doc.paragraphs if para.text.strip()]) | |
def extract_text_from_pptx(file_bytes): | |
text = [] | |
prs = pptx.Presentation(io.BytesIO(file_bytes)) | |
for slide in prs.slides: | |
for shape in slide.shapes: | |
if hasattr(shape, "text"): | |
text.append(shape.text) | |
return "\n".join(text) | |
def extract_text_from_xlsx(file_bytes): | |
wb = openpyxl.load_workbook(io.BytesIO(file_bytes)) | |
text = [] | |
for sheet in wb.sheetnames: | |
ws = wb[sheet] | |
for row in ws.iter_rows(values_only=True): | |
line = " ".join(str(cell) for cell in row if cell) | |
text.append(line) | |
return "\n".join(text) | |
def summarize_document(file): | |
file_bytes = file.read() | |
filename = getattr(file, "name", "").lower() | |
if filename.endswith(".pdf"): | |
text = extract_text_from_pdf(file_bytes) | |
elif filename.endswith(".docx"): | |
text = extract_text_from_docx(file_bytes) | |
elif filename.endswith(".pptx"): | |
text = extract_text_from_pptx(file_bytes) | |
elif filename.endswith(".xlsx"): | |
text = extract_text_from_xlsx(file_bytes) | |
else: | |
return "β Unsupported file format." | |
if not text.strip(): | |
return "β No extractable text found." | |
try: | |
summary = summarizer(text[:3000], max_length=150, min_length=30, do_sample=False) | |
return f"π Summary:\n{summary[0]['summary_text']}" | |
except Exception as e: | |
return f"β οΈ Summarization error: {e}" | |
def interpret_image(image): | |
if image is None: | |
return "No image uploaded." | |
try: | |
return f"πΌοΈ Caption:\n{image_captioner(image)[0]['generated_text']}" | |
except Exception as e: | |
return f"β οΈ Image captioning error: {e}" | |
# ------------------------- | |
# Gradio Interfaces | |
# ------------------------- | |
doc_summary = gr.Interface( | |
fn=summarize_document, | |
inputs=gr.File(label="Upload a Document"), | |
outputs="text", | |
title="π Document Summarizer" | |
) | |
img_caption = gr.Interface( | |
fn=interpret_image, | |
inputs=gr.Image(type="pil", label="Upload an Image"), | |
outputs="text", | |
title="πΌοΈ Image Interpreter" | |
) | |
# ------------------------- | |
# Combine into Gradio + FastAPI | |
# ------------------------- | |
demo = gr.TabbedInterface([doc_summary, img_caption], ["Document Summary", "Image Captioning"]) | |
app = gr.mount_gradio_app(app, demo, path="/") | |
def home(): | |
return RedirectResponse(url="/") | |