Spaces:
Running
Running
File size: 4,845 Bytes
c330600 f94fa3b fac31c8 f94fa3b fac31c8 f94fa3b fac31c8 f94fa3b 607327a 680d4a4 1e83db4 a74f8b0 f94fa3b cf9a79a f94fa3b cf9a79a f94fa3b 6dfac5c f94fa3b fac31c8 f94fa3b 12d05c0 f94fa3b 12d05c0 fac31c8 f94fa3b fac31c8 f94fa3b 5b4fc38 fac31c8 3e87c53 c330600 ffd57c2 c330600 ffd57c2 c55ca48 c330600 ffd57c2 c330600 c8db168 c4c89fb ffd57c2 c8db168 b0cc6e9 c8db168 ffd57c2 c8db168 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 c8db168 c330600 ffd57c2 c8db168 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 ffd57c2 c330600 5b4fc38 fac31c8 62d4126 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
"""from fastapi import FastAPI, UploadFile, Form
from fastapi.responses import RedirectResponse, FileResponse, JSONResponse
import os
import shutil
from PIL import Image
from transformers import ViltProcessor, ViltForQuestionAnswering
from gtts import gTTS
import torch
import tempfile
import gradio as gr
app = FastAPI()
# Load VQA Model
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
def answer_question_from_image(image, question):
if image is None or not question.strip():
return "Please upload an image and ask a question.", None
# Process with model
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
answer = vqa_model.config.id2label[predicted_id]
# Generate TTS audio
try:
tts = gTTS(text=answer)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tts.save(tmp.name)
audio_path = tmp.name
except Exception as e:
return f"Answer: {answer}\n\nโ ๏ธ Audio generation error: {e}", None
return answer, audio_path
def process_image_question(image: Image.Image, question: str):
answer, audio_path = answer_question_from_image(image, question)
return answer, audio_path
gui = gr.Interface(
fn=process_image_question,
inputs=[
gr.Image(type="pil", label="Upload Image"),
gr.Textbox(lines=2, placeholder="Ask a question about the image...", label="Question")
],
outputs=[
gr.Textbox(label="Answer", lines=5),
gr.Audio(label="Answer (Audio)", type="filepath")
],
title="๐ง Image QA with Voice",
description="Upload an image and ask a question. You'll get a text + spoken answer."
)
app = gr.mount_gradio_app(app, gui, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/") """
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import tempfile
import torch
from PIL import Image
from gtts import gTTS
import gradio as gr
from transformers import ViltProcessor, ViltForQuestionAnswering, AutoTokenizer, AutoModelForCausalLM
app = FastAPI()
# Load Models
vqa_processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
vqa_model = ViltForQuestionAnswering.from_pretrained("dandelin/vilt-b32-finetuned-vqa")
gpt_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-125M")
gpt_model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-125M")
# Rewrite answer to human-like sentence
def rewrite_answer(question: str, short_answer: str) -> str:
prompt = f"Question: {question}\nAnswer: {short_answer}\nRewrite the answer into a complete sentence:"
inputs = gpt_tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = gpt_model.generate(
**inputs,
max_new_tokens=40,
do_sample=False,
pad_token_id=gpt_tokenizer.eos_token_id,
temperature=0.7,
)
result = gpt_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the sentence after the "Rewrite..." line
return result.split("Rewrite the answer into a complete sentence:")[-1].strip()
def answer_question_from_image(image: Image.Image, question: str):
if image is None or not question.strip():
return "โ Please upload an image and type a question.", None
inputs = vqa_processor(image, question, return_tensors="pt")
with torch.no_grad():
outputs = vqa_model(**inputs)
predicted_id = outputs.logits.argmax(-1).item()
short_answer = vqa_model.config.id2label[predicted_id]
full_sentence = rewrite_answer(question, short_answer)
try:
tts = gTTS(text=full_sentence)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp:
tts.save(tmp.name)
audio_path = tmp.name
except Exception as e:
return f"{full_sentence}\n\nโ ๏ธ Audio generation error: {e}", None
return full_sentence, audio_path
# Gradio Interface
interface = gr.Interface(
fn=answer_question_from_image,
inputs=[
gr.Image(type="pil", label="๐ผ๏ธ Upload Image"),
gr.Textbox(lines=2, placeholder="Ask a question about the image", label="โ Question")
],
outputs=[
gr.Textbox(label="๐ฌ Answer"),
gr.Audio(label="๐ Voice Output", type="filepath")
],
title="๐ง Image QA with Voice (VQA + GPT-Neo)",
description="Ask a question about an image and get a full sentence answer, including audio!"
)
app = gr.mount_gradio_app(app, interface, path="/")
@app.get("/")
def home():
return RedirectResponse(url="/")
|