File size: 3,877 Bytes
95c2451
5b4fc38
3e87c53
cf9a79a
 
3e87c53
 
822dc40
 
95c2451
3e87c53
 
e5b6ad2
af32fa4
e5b6ad2
 
 
1e83db4
a74f8b0
3e87c53
af32fa4
3e87c53
822dc40
af32fa4
822dc40
 
 
 
 
 
 
 
af32fa4
 
cf9a79a
95c2451
af32fa4
 
 
 
 
cf9a79a
95c2451
af32fa4
 
 
 
 
 
 
 
 
 
cf9a79a
95c2451
af32fa4
822dc40
af32fa4
 
 
 
 
 
 
 
 
6dfac5c
af32fa4
 
 
29f74d3
95c2451
 
 
 
 
 
 
 
 
 
 
cf9a79a
95c2451
e5b6ad2
822dc40
95c2451
e5b6ad2
3e87c53
95c2451
 
3e87c53
95c2451
e5b6ad2
3e87c53
 
95c2451
3e87c53
95c2451
3e87c53
 
5b4fc38
3e87c53
5b4fc38
 
 
 
 
 
 
 
 
 
 
 
 
3e87c53
 
af32fa4
3e87c53
95c2451
5b4fc38
3e87c53
5b4fc38
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
import fitz  # PyMuPDF
import docx
import openpyxl
import pptx
import io
import os
import tempfile
from PIL import Image
import gradio as gr
from transformers import pipeline

# Load models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")

app = FastAPI()

# -------------------------
# Extraction Functions
# -------------------------
def extract_text_from_pdf(file_bytes):
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
            tmp.write(file_bytes)
            tmp_path = tmp.name

        with fitz.open(tmp_path) as doc:
            text = "\n".join(page.get_text() for page in doc)
        os.unlink(tmp_path)
        return text
    except Exception as e:
        return f"❌ PDF extraction error: {e}"

def extract_text_from_docx(file_bytes):
    try:
        doc = docx.Document(io.BytesIO(file_bytes))
        return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
    except Exception as e:
        return f"❌ DOCX extraction error: {e}"

def extract_text_from_pptx(file_bytes):
    try:
        prs = pptx.Presentation(io.BytesIO(file_bytes))
        text = []
        for slide in prs.slides:
            for shape in slide.shapes:
                if hasattr(shape, "text"):
                    text.append(shape.text)
        return "\n".join(text)
    except Exception as e:
        return f"❌ PPTX extraction error: {e}"

def extract_text_from_xlsx(file_bytes):
    try:
        wb = openpyxl.load_workbook(io.BytesIO(file_bytes), read_only=True, data_only=True)
        text = []
        for sheet in wb.sheetnames:
            ws = wb[sheet]
            for row in ws.iter_rows(values_only=True):
                line = " ".join(str(cell) for cell in row if cell)
                text.append(line)
        return "\n".join(text)
    except Exception as e:
        return f"❌ XLSX extraction error: {e}"

# -------------------------
# Main Logic
# -------------------------
def summarize_document(file):
    file_bytes = file.read()
    filename = getattr(file, "name", "").lower()

    if filename.endswith(".pdf"):
        text = extract_text_from_pdf(file_bytes)
    elif filename.endswith(".docx"):
        text = extract_text_from_docx(file_bytes)
    elif filename.endswith(".pptx"):
        text = extract_text_from_pptx(file_bytes)
    elif filename.endswith(".xlsx"):
        text = extract_text_from_xlsx(file_bytes)
    else:
        return "❌ Unsupported file format."

    if not text or not text.strip():
        return "❗ No extractable text found."

    try:
        summary = summarizer(text[:3000], max_length=150, min_length=30, do_sample=False)
        return f"πŸ“„ Summary:\n{summary[0]['summary_text']}"
    except Exception as e:
        return f"⚠️ Summarization error: {e}"

def interpret_image(image):
    try:
        return f"πŸ–ΌοΈ Caption:\n{image_captioner(image)[0]['generated_text']}"
    except Exception as e:
        return f"⚠️ Image captioning error: {e}"

# -------------------------
# Gradio Interfaces
# -------------------------
doc_summary = gr.Interface(
    fn=summarize_document,
    inputs=gr.File(label="Upload a Document"),
    outputs="text",
    title="πŸ“„ Document Summarizer"
)

img_caption = gr.Interface(
    fn=interpret_image,
    inputs=gr.Image(type="pil", label="Upload an Image"),
    outputs="text",
    title="πŸ–ΌοΈ Image Interpreter"
)

# -------------------------
# Launch with FastAPI
# -------------------------
demo = gr.TabbedInterface([doc_summary, img_caption], ["Document Summary", "Image Captioning"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")