File size: 3,096 Bytes
5b4fc38
 
3e87c53
cf9a79a
 
3e87c53
 
 
 
 
 
e5b6ad2
3e87c53
e5b6ad2
 
 
1e83db4
a74f8b0
3e87c53
 
 
 
 
 
 
 
 
cf9a79a
 
3e87c53
 
cf9a79a
 
3e87c53
 
 
 
 
 
 
cf9a79a
 
3e87c53
 
 
 
 
 
 
 
 
 
 
 
 
cf9a79a
 
 
 
 
 
 
3e87c53
e5b6ad2
cf9a79a
3e87c53
e5b6ad2
3e87c53
 
 
 
 
 
e5b6ad2
3e87c53
 
 
 
 
 
 
 
 
5b4fc38
3e87c53
5b4fc38
 
 
 
 
 
 
 
 
 
 
 
 
3e87c53
 
5b4fc38
3e87c53
5b4fc38
 
3e87c53
5b4fc38
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
from fastapi import FastAPI, UploadFile
from fastapi.responses import RedirectResponse
import fitz  # PyMuPDF
import docx
import openpyxl
import pptx
from PIL import Image
import io

import gradio as gr
from transformers import pipeline

# Models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")

app = FastAPI()

# -------------------------
# Document Extraction Utils
# -------------------------
def extract_text_from_pdf(file):
    text = ""
    with fitz.open(stream=file.read(), filetype="pdf") as doc:
        for page in doc:
            text += page.get_text()
    return text

def extract_text_from_docx(file):
    doc = docx.Document(io.BytesIO(file.read()))
    return "\n".join([para.text for para in doc.paragraphs if para.text.strip()])

def extract_text_from_pptx(file):
    text = []
    prs = pptx.Presentation(io.BytesIO(file.read()))
    for slide in prs.slides:
        for shape in slide.shapes:
            if hasattr(shape, "text"):
                text.append(shape.text)
    return "\n".join(text)

def extract_text_from_xlsx(file):
    wb = openpyxl.load_workbook(io.BytesIO(file.read()))
    text = []
    for sheet in wb.sheetnames:
        ws = wb[sheet]
        for row in ws.iter_rows(values_only=True):
            line = " ".join(str(cell) for cell in row if cell)
            text.append(line)
    return "\n".join(text)

def summarize_document(file: UploadFile):
    ext = file.filename.split(".")[-1].lower()
    if ext == "pdf":
        text = extract_text_from_pdf(file)
    elif ext == "docx":
        text = extract_text_from_docx(file)
    elif ext == "pptx":
        text = extract_text_from_pptx(file)
    elif ext == "xlsx":
        text = extract_text_from_xlsx(file)
    else:
        return "Unsupported file format."

    if not text.strip():
        return "No extractable text."

    text = text[:3000]
    try:
        summary = summarizer(text, max_length=150, min_length=30, do_sample=False)
        return summary[0]["summary_text"]
    except Exception as e:
        return f"Summarization error: {e}"

def interpret_image(image):
    if image is None:
        return "No image uploaded."
    try:
        return image_captioner(image)[0]["generated_text"]
    except Exception as e:
        return f"Image captioning error: {e}"

# -------------------------
# Gradio Interfaces
# -------------------------
doc_summary = gr.Interface(
    fn=summarize_document,
    inputs=gr.File(label="Upload a Document"),
    outputs="text",
    title="๐Ÿ“„ Document Summarizer"
)

img_caption = gr.Interface(
    fn=interpret_image,
    inputs=gr.Image(type="pil", label="Upload an Image"),
    outputs="text",
    title="๐Ÿ–ผ๏ธ Image Interpreter"
)

# -------------------------
# Combine into Gradio + FastAPI
# -------------------------
demo = gr.TabbedInterface([doc_summary, img_caption], ["Document QA", "Image QA"])
app = gr.mount_gradio_app(app, demo, path="/")

@app.get("/")
def home():
    return RedirectResponse(url="/")