Spaces:
Running
Running
File size: 3,984 Bytes
95c2451 5b4fc38 3fb07d9 40485d4 cf9a79a 3e87c53 3fb07d9 3e87c53 3fb07d9 3e87c53 e5b6ad2 3fb07d9 e5b6ad2 3fb07d9 1e83db4 a74f8b0 3e87c53 3fb07d9 3e87c53 3fb07d9 af32fa4 3fb07d9 40485d4 af32fa4 cf9a79a 3fb07d9 af32fa4 3fb07d9 af32fa4 cf9a79a 3fb07d9 af32fa4 3fb07d9 af32fa4 cf9a79a 3fb07d9 af32fa4 3fb07d9 af32fa4 40485d4 af32fa4 6dfac5c af32fa4 3fb07d9 af32fa4 3fb07d9 cf9a79a 3fb07d9 e5b6ad2 3fb07d9 e5b6ad2 3e87c53 95c2451 3e87c53 95c2451 e5b6ad2 3e87c53 3fb07d9 3e87c53 95c2451 3e87c53 95c2451 3e87c53 3fb07d9 3e87c53 3fb07d9 5b4fc38 3fb07d9 5b4fc38 3fb07d9 5b4fc38 3fb07d9 5b4fc38 3e87c53 3fb07d9 5b4fc38 3e87c53 5b4fc38 3fb07d9 5b4fc38 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
from fastapi import FastAPI
from fastapi.responses import RedirectResponse
from transformers import pipeline
from PIL import Image
import fitz # PyMuPDF
import docx
import pptx
import openpyxl
import io
import gradio as gr
# Initialize models
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
image_captioner = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
# FastAPI app
app = FastAPI()
# -------------------------
# Helper Functions
# -------------------------
def extract_text_from_pdf(upload):
try:
file_bytes = upload.read()
stream = io.BytesIO(file_bytes)
with fitz.open(stream=stream, filetype="pdf") as doc:
return "\n".join([page.get_text() for page in doc])
except Exception as e:
return f"β PDF extraction error: {e}"
def extract_text_from_docx(upload):
try:
file_bytes = upload.read()
stream = io.BytesIO(file_bytes)
doc = docx.Document(stream)
return "\n".join(p.text for p in doc.paragraphs if p.text.strip())
except Exception as e:
return f"β DOCX extraction error: {e}"
def extract_text_from_pptx(upload):
try:
file_bytes = upload.read()
stream = io.BytesIO(file_bytes)
prs = pptx.Presentation(stream)
text = []
for slide in prs.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
text.append(shape.text)
return "\n".join(text)
except Exception as e:
return f"β PPTX extraction error: {e}"
def extract_text_from_xlsx(upload):
try:
file_bytes = upload.read()
stream = io.BytesIO(file_bytes)
wb = openpyxl.load_workbook(stream)
text = []
for sheet in wb.sheetnames:
ws = wb[sheet]
for row in ws.iter_rows(values_only=True):
text.append(" ".join(str(cell) for cell in row if cell))
return "\n".join(text)
except Exception as e:
return f"β XLSX extraction error: {e}"
# -------------------------
# Core Functions
# -------------------------
def summarize_document(upload):
if not upload:
return "β οΈ No file uploaded."
ext = upload.name.lower()
upload.seek(0)
if ext.endswith(".pdf"):
text = extract_text_from_pdf(upload)
elif ext.endswith(".docx"):
text = extract_text_from_docx(upload)
elif ext.endswith(".pptx"):
text = extract_text_from_pptx(upload)
elif ext.endswith(".xlsx"):
text = extract_text_from_xlsx(upload)
else:
return "β Unsupported file type."
if not text or not text.strip() or text.startswith("β"):
return text if text.startswith("β") else "β No extractable text found."
try:
summary = summarizer(text[:3000], max_length=150, min_length=30, do_sample=False)
return f"π Summary:\n{summary[0]['summary_text']}"
except Exception as e:
return f"β οΈ Summarization error: {e}"
def interpret_image(image):
if not image:
return "β οΈ No image uploaded."
try:
return f"πΌοΈ Caption:\n{image_captioner(image)[0]['generated_text']}"
except Exception as e:
return f"β οΈ Image captioning error: {e}"
# -------------------------
# Gradio Interface
# -------------------------
doc_ui = gr.Interface(
fn=summarize_document,
inputs=gr.File(label="Upload a Document (PDF, DOCX, PPTX, XLSX)"),
outputs=gr.Textbox(label="Summary"),
title="π Document Summarizer"
)
img_ui = gr.Interface(
fn=interpret_image,
inputs=gr.Image(type="pil", label="Upload an Image"),
outputs=gr.Textbox(label="Caption"),
title="πΌοΈ Image Interpreter"
)
demo = gr.TabbedInterface([doc_ui, img_ui], ["Document Summarization", "Image Captioning"])
app = gr.mount_gradio_app(app, demo, path="/")
@app.get("/")
def redirect_to_ui():
return RedirectResponse(url="/")
|