Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import random | |
| import uuid | |
| import json | |
| import gradio as gr | |
| import numpy as np | |
| from PIL import Image | |
| import spaces | |
| import torch | |
| from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
| #Load the HTML content | |
| #html_file_url = "https://prithivmlmods-hamster-static.static.hf.space/index.html" | |
| #html_content = f'<iframe src="{html_file_url}" style="width:100%; height:180px; border:none;"></iframe>' | |
| #html_file_url = "https://prithivmlmods-static-loading-theme.static.hf.space/index.html" | |
| #html_file_url = "https://prithivhamster.vercel.app/" | |
| #html_content = f'<iframe src="{html_file_url}" style="width:100%; height:400px; border:none"></iframe>' | |
| DESCRIPTIONx = """## STABLE HAMSTER | |
| """ | |
| css = ''' | |
| .gradio-container{max-width: 560px !important} | |
| h1{text-align:center} | |
| footer { | |
| visibility: hidden | |
| } | |
| ''' | |
| examples = [ | |
| "3d image, cute girl, in the style of Pixar --ar 1:2 --stylize 750, 4K resolution highlights, Sharp focus, octane render, ray tracing, Ultra-High-Definition, 8k, UHD, HDR, (Masterpiece:1.5), (best quality:1.5)", | |
| "Cold coffee in a cup bokeh --ar 85:128 --v 6.0 --style raw5, 4K", | |
| "Vector illustration of a horse, vector graphic design with flat colors on an brown background in the style of vector art, using simple shapes and graphics with simple details, professionally designed as a tshirt logo ready for print on a white background. --ar 89:82 --v 6.0 --style raw", | |
| "Man in brown leather jacket posing for camera, in the style of sleek and stylized, clockpunk, subtle shades, exacting precision, ferrania p30 --ar 67:101 --v 5", | |
| "Commercial photography, giant burger, white lighting, studio light, 8k octane rendering, high resolution photography, insanely detailed, fine details, on white isolated plain, 8k, commercial photography, stock photo, professional color grading, --v 4 --ar 9:16 " | |
| ] | |
| #Set an os.Getenv variable | |
| #set VAR_NAME=”VALUE” | |
| #Fetch an environment variable | |
| #echo %VAR_NAME% | |
| MODEL_ID = os.getenv("MODEL_REPO") | |
| MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096")) | |
| USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1" | |
| ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1" | |
| BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # Allow generating multiple images at once | |
| #Load model outside of function | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| pipe = StableDiffusionXLPipeline.from_pretrained( | |
| MODEL_ID, | |
| torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
| use_safetensors=True, | |
| add_watermarker=False, | |
| ).to(device) | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| # <compile speedup > | |
| if USE_TORCH_COMPILE: | |
| pipe.compile() | |
| # Offloading capacity (RAM) | |
| if ENABLE_CPU_OFFLOAD: | |
| pipe.enable_model_cpu_offload() | |
| MAX_SEED = np.iinfo(np.int32).max | |
| def save_image(img): | |
| unique_name = str(uuid.uuid4()) + ".png" | |
| img.save(unique_name) | |
| return unique_name | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| @spaces.GPU(duration=60, enable_queue=True) | |
| def generate( | |
| prompt: str, | |
| negative_prompt: str = "", | |
| use_negative_prompt: bool = False, | |
| seed: int = 1, | |
| width: int = 1024, | |
| height: int = 1024, | |
| guidance_scale: float = 3, | |
| num_inference_steps: int = 25, | |
| randomize_seed: bool = False, | |
| use_resolution_binning: bool = True, | |
| num_images: int = 1, # Number of images to generate | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| seed = int(randomize_seed_fn(seed, randomize_seed)) | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| #Options | |
| options = { | |
| "prompt": [prompt] * num_images, | |
| "negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None, | |
| "width": width, | |
| "height": height, | |
| "guidance_scale": guidance_scale, | |
| "num_inference_steps": num_inference_steps, | |
| "generator": generator, | |
| "output_type": "pil", | |
| } | |
| #VRAM usage Lesser | |
| if use_resolution_binning: | |
| options["use_resolution_binning"] = True | |
| #Images potential batches | |
| images = [] | |
| for i in range(0, num_images, BATCH_SIZE): | |
| batch_options = options.copy() | |
| batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE] | |
| if "negative_prompt" in batch_options: | |
| batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE] | |
| images.extend(pipe(**batch_options).images) | |
| image_paths = [save_image(img) for img in images] | |
| return image_paths, seed | |
| #Main gr.Block | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| gr.Markdown(DESCRIPTIONx) | |
| with gr.Group(): | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", scale=0) | |
| result = gr.Gallery(label="Result", columns=1, show_label=False) | |
| with gr.Accordion("Advanced options", open=False, visible=False): | |
| num_images = gr.Slider( | |
| label="Number of Images", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=1, | |
| ) | |
| with gr.Row(): | |
| use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True) | |
| negative_prompt = gr.Text( | |
| label="Negative prompt", | |
| max_lines=5, | |
| lines=4, | |
| placeholder="Enter a negative prompt", | |
| value="(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
| visible=True, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Row(visible=True): | |
| width = gr.Slider( | |
| label="Width", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| height = gr.Slider( | |
| label="Height", | |
| minimum=512, | |
| maximum=MAX_IMAGE_SIZE, | |
| step=64, | |
| value=1024, | |
| ) | |
| with gr.Row(): | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=0.1, | |
| maximum=6, | |
| step=0.1, | |
| value=3.0, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Number of inference steps", | |
| minimum=1, | |
| maximum=25, | |
| step=1, | |
| value=23, | |
| ) | |
| gr.Examples( | |
| examples=examples, | |
| inputs=prompt, | |
| cache_examples=False | |
| ) | |
| use_negative_prompt.change( | |
| fn=lambda x: gr.update(visible=x), | |
| inputs=use_negative_prompt, | |
| outputs=negative_prompt, | |
| api_name=False, | |
| ) | |
| gr.on( | |
| triggers=[ | |
| prompt.submit, | |
| negative_prompt.submit, | |
| run_button.click, | |
| ], | |
| fn=generate, | |
| inputs=[ | |
| prompt, | |
| negative_prompt, | |
| use_negative_prompt, | |
| seed, | |
| width, | |
| height, | |
| guidance_scale, | |
| num_inference_steps, | |
| randomize_seed, | |
| num_images | |
| ], | |
| outputs=[result, seed], | |
| api_name="run", | |
| ) | |
| #gr.HTML(html_content) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=40).launch() |