Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,998 Bytes
6e5e1d5 f423428 fd83843 6e5e1d5 fd83843 10437bc 6e5e1d5 310a01c 6e5e1d5 add09dc cbde7ca 1fb83ef 10437bc cbde7ca 10437bc fd83843 6e5e1d5 a9bb828 6e5e1d5 95f8c36 6e5e1d5 add09dc a904d5b 310a01c fecc0e6 6e5e1d5 fecc0e6 6e5e1d5 310a01c fecc0e6 310a01c fecc0e6 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 fecc0e6 310a01c 6e5e1d5 310a01c fecc0e6 310a01c bd189f1 310a01c fecc0e6 310a01c 6e5e1d5 310a01c 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 add09dc 6e5e1d5 a904d5b 6e5e1d5 fecc0e6 310a01c fecc0e6 bd189f1 fecc0e6 6e5e1d5 a9bb828 6e5e1d5 310a01c fecc0e6 6e5e1d5 ad14e79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import gradio as gr
import numpy as np
import random
import gc
import json
import torch
import spaces
from diffusers.pipelines import Lumina2Text2ImgPipeline
from diffusers.models.transformers.transformer_lumina2 import Lumina2Transformer2DModel
from diffusers import (
AutoencoderKL,
FlowMatchEulerDiscreteScheduler
)
from diffusers.loaders.single_file_utils import (
convert_sd3_transformer_checkpoint_to_diffusers,
)
from transformers import (
Gemma2Model,
GemmaTokenizer
)
default_system_prompt = "You are an assistant designed to generate superior images with the superior degree of image-text alignment based on textual prompts or user prompts."
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "Alpha-VLLM/Lumina-Image-2.0"
transformer_repo_id = "benjamin-paine/Lumina-Image-2.0" # Temporarily fixed, change when main repo gets updated
if torch.cuda.is_available():
torch_dtype = torch.bfloat16
else:
torch_dtype = torch.float32
###
transformer = Lumina2Transformer2DModel.from_pretrained(transformer_repo_id, subfolder="transformer")
vae = AutoencoderKL.from_pretrained(model_repo_id, subfolder="vae")
text_encoder = Gemma2Model.from_pretrained(model_repo_id, subfolder="text_encoder")
tokenizer = GemmaTokenizer.from_pretrained(model_repo_id, subfolder="tokenizer")
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler")
###
pipe = Lumina2Text2ImgPipeline(
vae=vae,
text_encoder=text_encoder,
transformer=transformer,
tokenizer=tokenizer,
scheduler=scheduler,
)
pipe.to(device, torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1536
@spaces.GPU(duration=60)
def infer(
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
width=1024,
height=1024,
guidance_scale=4.0,
num_inference_steps=30,
system_prompt=default_system_prompt,
cfg_normalization=True,
cfg_trunc_ratio=1.0,
max_sequence_length=256,
dynamic_shifting=True,
sigmas="Default",
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
pipe.scheduler.config.use_dynamic_shifting = dynamic_shifting
pipe.scheduler.config.use_karras_sigmas = sigmas == "Karras"
pipe.scheduler.config.use_exponential_sigmas = sigmas == "Exponential"
pipe.scheduler.config.use_beta_sigmas = sigmas == "Beta"
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
system_prompt=system_prompt,
max_sequence_length=max_sequence_length,
cfg_normalization=cfg_normalization,
cfg_trunc_ratio=cfg_trunc_ratio,
).images[0]
return image, seed
examples = [
"A serene photograph capturing the golden reflection of the sun on a vast expanse of water. The sun is positioned at the top center, casting a brilliant, shimmering trail of light across the rippling surface. The water is textured with gentle waves, creating a rhythmic pattern that leads the eye towards the horizon. The entire scene is bathed in warm, golden hues, enhancing the tranquil and meditative atmosphere. High contrast, natural lighting, golden hour, photorealistic, expansive composition, reflective surface, peaceful, visually harmonious.",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # [Lumina Image v2.0](https://huggingface.co/Alpha-VLLM/Lumina-Image-2.0) by [Alpha-VLLM](https://huggingface.co/Alpha-VLLM)")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
lines=2,
max_lines=4,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
with gr.Row():
system_prompt = gr.Text(
label="System Prompt",
lines=2,
max_lines=4,
value=default_system_prompt
)
with gr.Row():
negative_prompt = gr.Text(
label="Negative prompt",
lines=2,
max_lines=4,
placeholder="Enter a negative prompt",
)
with gr.Row():
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=512,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=7.5,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=30,
)
max_sequence_length = gr.Slider(
label="Max Sequence Length",
minimum=16,
maximum=512,
value=256,
step=8
)
with gr.Row():
cfg_normalization = gr.Checkbox(
label="CFG Normalization",
value=True
)
cfg_trunc_ratio = gr.Slider(
label="CFG Truncation Ratio",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0
)
with gr.Row():
dynamic_shifting = gr.Checkbox(
label="Use Dynamic Shifting",
value=True
)
sigmas = gr.Dropdown(
label="Sigmas",
choices=[
"Default",
"Karras",
"Exponential",
"Beta"
],
value="Default"
)
gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=True, cache_mode="lazy")
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
system_prompt,
cfg_normalization,
cfg_trunc_ratio,
max_sequence_length,
dynamic_shifting,
sigmas
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(ssr_mode=False)
|