# -*- coding: utf-8 -*- import os import sys import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] # from diffusers import DiffusionPipeline import torch from torchvision.transforms import ToTensor, ToPILImage import logging # logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL) from huggingface_hub import hf_hub_download, snapshot_download model_name = "iimmortall/UltraFusion" auth_token = os.getenv("HF_AUTH_TOKEN") # greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token) # sys.path.append(os.path.split(greet_file)[0]) model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app") # sys.path.append(model_folder) # sys.path.insert(0, model_folder) # print(sys.path) from ultrafusion_utils import load_model, run_ultrafusion, check_input to_tensor = ToTensor() to_pil = ToPILImage() ultrafusion_pipe, flow_model = load_model() device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=60) #[uncomment to use ZeroGPU] def infer( under_expo_img, over_expo_img, num_inference_steps ): print(under_expo_img.size) print("reciving image") # under_expo_img = under_expo_img.resize([1500, 1000]) # over_expo_img = over_expo_img.resize([1500, 1000]) under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500) ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda") oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda") out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None) out = out.clamp(0, 1).squeeze() out_pil = to_pil(out) return out_pil examples= [ [os.path.join("examples", img_name, "ue.jpg"), os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples")) ] IMG_W = 320 IMG_H = 240 css = """ #col-container { margin: 0 auto; max-width: 640px; } """ # max-heigh: 1500px; _HEADER_ = '''