# -*- coding: utf-8 -*- import os import sys import gradio as gr import numpy as np import random import spaces #[uncomment to use ZeroGPU] # from diffusers import DiffusionPipeline import torch from torchvision.transforms import ToTensor, ToPILImage import logging # logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL) from huggingface_hub import hf_hub_download, snapshot_download model_name = "iimmortall/UltraFusion" auth_token = os.getenv("HF_AUTH_TOKEN") # greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token) # sys.path.append(os.path.split(greet_file)[0]) model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app") # sys.path.append(model_folder) # sys.path.insert(0, model_folder) # print(sys.path) from ultrafusion_utils import load_model, run_ultrafusion, check_input to_tensor = ToTensor() to_pil = ToPILImage() ultrafusion_pipe, flow_model = load_model() device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch_dtype = torch.float16 else: torch_dtype = torch.float32 MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 @spaces.GPU(duration=60) #[uncomment to use ZeroGPU] def infer( under_expo_img, over_expo_img, num_inference_steps ): print(under_expo_img.size) print("reciving image") # under_expo_img = under_expo_img.resize([1500, 1000]) # over_expo_img = over_expo_img.resize([1500, 1000]) under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500) ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda") oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda") out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None) out = out.clamp(0, 1).squeeze() out_pil = to_pil(out) return out_pil examples= [ [os.path.join("examples", img_name, "ue.jpg"), os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples")) ] IMG_W = 320 IMG_H = 240 css = """ #col-container { margin: 0 auto; max-width: 640px; } """ # max-heigh: 1500px; _HEADER_ = '''

Official 🤗 UltraHDR Demo

UltraHDR: xxx

''' _CITE_ = r""" 📝 **Citation** If you find our work useful for your research or applications, please cite using this bibtex: ```bibtex @article{xxx, title={xxx}, author={xxx}, journal={arXiv preprint arXiv:xx.xx}, year={2024} } ``` 📋 **License** CC BY-NC 4.0. LICENSE. 📧 **Contact** If you have any questions, feel free to open a discussion or contact us at xxx@gmail.com. """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(" # UltraHDR") with gr.Row(): under_expo_img = gr.Image(label="UnderExposureImage", show_label=True, image_mode="RGB", sources=["upload", ], width=IMG_W, height=IMG_H, type="pil" ) over_expo_img = gr.Image(label="OverExposureImage", show_label=True, image_mode="RGB", sources=["upload", ], width=IMG_W, height=IMG_H, type="pil" ) with gr.Row(): run_button = gr.Button("Run", variant="primary") # scale=0, result = gr.Image(label="Result", show_label=True, type='pil', image_mode='RGB', format="png", width=IMG_W*2, height=IMG_H*2, ) with gr.Accordion("Advanced Settings", open=True): num_inference_steps = gr.Slider( label="Number of inference steps", minimum=2, maximum=50, step=1, value=20, # Replace with defaults that work for your model interactive=True ) gr.Examples( examples=examples, inputs=[under_expo_img, over_expo_img, num_inference_steps], label="Examples", # examples_per_page=10, fn=infer, cache_examples=True, outputs=[result,], ) # gr.Markdown(_CITE_) run_button.click(fn=infer, inputs=[under_expo_img, over_expo_img, num_inference_steps], outputs=[result,], ) if __name__ == "__main__": demo.queue(max_size=10) demo.launch(share=True) # demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)