Spaces:
Sleeping
Sleeping
File size: 4,834 Bytes
c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 0b40a67 c1d8208 0b40a67 c1d8208 0b40a67 c1d8208 92229a9 c1d8208 9d20dd8 92229a9 9d20dd8 c1d8208 92229a9 9d20dd8 c1d8208 9d20dd8 92229a9 9d20dd8 c1d8208 9d20dd8 92229a9 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 9d20dd8 c1d8208 92229a9 c1d8208 df5a6e4 c1d8208 df5a6e4 92229a9 df5a6e4 c1d8208 92229a9 c1d8208 9d20dd8 c1d8208 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# -*- coding: utf-8 -*-
import os
import sys
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
# from diffusers import DiffusionPipeline
import torch
from torchvision.transforms import ToTensor, ToPILImage
import logging
# logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)
from huggingface_hub import hf_hub_download, snapshot_download
model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
# greet_file = hf_hub_download(repo_id=model_name, filename="main.py", use_auth_token=auth_token)
# sys.path.append(os.path.split(greet_file)[0])
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app")
# sys.path.append(model_folder)
# sys.path.insert(0, model_folder)
# print(sys.path)
from ultrafusion_utils import load_model, run_ultrafusion, check_input
to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
under_expo_img,
over_expo_img,
num_inference_steps
):
print(under_expo_img.size)
print("reciving image")
# under_expo_img = under_expo_img.resize([1500, 1000])
# over_expo_img = over_expo_img.resize([1500, 1000])
under_expo_img, over_expo_img = check_input(under_expo_img, over_expo_img, max_l=1500)
ue = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
oe = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
out = run_ultrafusion(ue, oe, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None)
out = out.clamp(0, 1).squeeze()
out_pil = to_pil(out)
return out_pil
examples= [
[os.path.join("examples", img_name, "ue.jpg"),
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# max-heigh: 1500px;
_HEADER_ = '''
<h2><b>Official π€ UltraHDR Demo</b></h2><h2><a href='' target='_blank'><b>UltraHDR: xxx</b></a></h2>
'''
_CITE_ = r"""
π **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
title={xxx},
author={xxx},
journal={arXiv preprint arXiv:xx.xx},
year={2024}
}
```
π **License**
CC BY-NC 4.0. LICENSE.
π§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # UltraHDR")
with gr.Row():
under_expo_img = gr.Image(label="UnderExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
over_expo_img = gr.Image(label="OverExposureImage", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
with gr.Row():
run_button = gr.Button("Run", variant="primary") # scale=0,
result = gr.Image(label="Result", show_label=True,
type='pil',
image_mode='RGB',
format="png",
width=IMG_W*2,
height=IMG_H*2,
)
with gr.Accordion("Advanced Settings", open=True):
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=2,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
interactive=True
)
gr.Examples(
examples=examples,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
label="Examples",
# examples_per_page=10,
fn=infer,
cache_examples=True,
outputs=[result,],
)
# gr.Markdown(_CITE_)
run_button.click(fn=infer,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
outputs=[result,],
)
if __name__ == "__main__":
demo.queue(max_size=10)
demo.launch(share=True)
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)
|