Spaces:
Runtime error
Runtime error
File size: 8,085 Bytes
563d40d 0ed0c7c 563d40d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
# -*- coding: utf-8 -*-
import os
import sys
import datetime
import gradio as gr
import numpy as np
from PIL import Image
import spaces #[uncomment to use ZeroGPU]
import torch
from torchvision.transforms import ToTensor, ToPILImage
# -------------------------- HuggingFace -------------------------------
from huggingface_hub import hf_hub_download, snapshot_download
model_name = "iimmortall/UltraFusion"
auth_token = os.getenv("HF_AUTH_TOKEN")
model_folder = snapshot_download(repo_id=model_name, token=auth_token, local_dir="/home/user/app", force_download=True)
from ultrafusion_utils import load_model, run_ultrafusion, check_input
PYCUDA_FLAG = True
try :
import pycuda
except Exception:
PYCUDA_FLAG = False
print("No pycuda!!!")
RUN_TIMES = 0
to_tensor = ToTensor()
to_pil = ToPILImage()
ultrafusion_pipe, flow_model = load_model()
device = "cuda" if torch.cuda.is_available() else "cpu"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU(duration=60) #[uncomment to use ZeroGPU]
def infer(
under_expo_img,
over_expo_img,
num_inference_steps
):
print(under_expo_img.size)
print("reciving image")
under_expo_img_lr, over_expo_img_lr, under_expo_img, over_expo_img, use_bgu = check_input(under_expo_img, over_expo_img, max_l=1500)
global PYCUDA_FLAG
if not PYCUDA_FLAG and use_bgu:
print("No pycuda, do not run BGU.")
use_bgu = False
ue = to_tensor(under_expo_img_lr).unsqueeze(dim=0).to("cuda")
oe = to_tensor(over_expo_img_lr).unsqueeze(dim=0).to("cuda")
ue_hr = to_tensor(under_expo_img).unsqueeze(dim=0).to("cuda")
oe_hr = to_tensor(over_expo_img).unsqueeze(dim=0).to("cuda")
print("num_inference_steps:", num_inference_steps)
try:
if num_inference_steps is None:
num_inference_steps = 20
num_inference_steps = int(num_inference_steps)
except Exception as e:
num_inference_steps = 20
out = run_ultrafusion(ue, oe, ue_hr, oe_hr, use_bgu, 'test', flow_model=flow_model, pipe=ultrafusion_pipe, steps=num_inference_steps, consistent_start=None, test_bs=8)
out = out.clamp(0, 1).squeeze()
out_pil = to_pil(out)
global RUN_TIMES
RUN_TIMES = RUN_TIMES + 1
print("---------------------------- Using Times---------------------------------------")
print(f"{datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')}: Using times: {RUN_TIMES}")
return out_pil
def build_demo():
examples= [
[os.path.join("examples", img_name, "ue.jpg"),
os.path.join("examples", img_name, "oe.jpg")] for img_name in sorted(os.listdir("examples"))
]
IMG_W = 320
IMG_H = 240
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
# max-heigh: 1500px;
_README_ = r"""
- This is an HDR algorithm that fuses two images with different exposures.
- This can fuse two images with a very large exposure difference, even up to 9 stops.
- The two input images should have the same resolution; otherwise, an error will be reported.
- We are committed to not storing any data you upload or the results of its processing.
"""
# - The maximum resolution we support is 1500 x 1500. If the images you upload are larger than this, they will be downscaled while maintaining the original aspect ratio.
# - This is only for internal testing. Do not share it publicly.
_CITE_ = r"""
π **Citation**
If you find our work useful for your research or applications, please cite using this bibtex:
```bibtex
@article{xxx,
title={xxx},
author={xxx},
journal={arXiv preprint arXiv:xx.xx},
year={2024}
}
```
π **License**
CC BY-NC 4.0. LICENSE.
π§ **Contact**
If you have any questions, feel free to open a discussion or contact us at <b>[email protected]</b>.
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>UltraFusion HDR πΈβ¨</b></h1>""")
# gr.Markdown("""<h1 style="text-align: center; font-size: 32px;"><b>OpenImagingLab</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>How do I use it?</b></h1>""")
with gr.Row():
gr.Image("ui/en-short.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
gr.Image("ui/en-long.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
gr.Image("ui/en-run.png", width=IMG_W//3, show_label=False, interactive=False, show_download_button=False)
with gr.Row():
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>β Tap the center of the camera screen, then drag the βοΈ icon downward to capture a photo with a shorter exposure.</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>β Tap the center of the camera screen, then drag the βοΈ icon upward to capture a photo with a longer exposure.</b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 12px;"><b>β Upload the short and long exposure images, then click the 'Run' button to receive the result. </b></h1>""")
gr.Markdown("""<h1 style="text-align: center; font-size: 24px;"><b>Enjoy it!</b></h1>""")
with gr.Row():
under_expo_img = gr.Image(label="Short Exposure Image", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
over_expo_img = gr.Image(label="Long Exposure Image", show_label=True,
image_mode="RGB",
sources=["upload", ],
width=IMG_W,
height=IMG_H,
type="pil"
)
with gr.Row():
run_button = gr.Button("Run", variant="primary") # scale=0,
result = gr.Image(label="Result", show_label=True,
type='pil',
image_mode='RGB',
format="png",
width=IMG_W*2,
height=IMG_H*2,
)
gr.Markdown(r"""<h1 style="text-align: center; font-size: 18px;"><b>Like it? Click the button π₯ on the image to download.</b></h1>""") # width="100" height="100" <img src="ui/download.svg" alt="download">
with gr.Accordion("Advanced Settings", open=True):
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=2,
maximum=50,
step=1,
value=20, # Replace with defaults that work for your model
interactive=True
)
gr.Examples(
examples=examples,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
label="Examples",
# examples_per_page=10,
fn=infer,
cache_examples=True,
outputs=[result,],
)
gr.Markdown(_README_)
# gr.Markdown(_CITE_)
run_button.click(fn=infer,
inputs=[under_expo_img, over_expo_img, num_inference_steps],
outputs=[result,],
)
return demo
if __name__ == "__main__":
demo = build_demo()
demo.queue(max_size=10)
demo.launch(server_name="0.0.0.0", server_port=7860, share=True)
# demo.launch(server_name="0.0.0.0", debug=True, show_api=True, show_error=True, share=False)
|