Spaces:
Running
Running
File size: 12,546 Bytes
1aeb176 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
import google.generativeai as genai
from langchain_core.messages import HumanMessage, SystemMessage
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_community.utilities import DuckDuckGoSearchAPIWrapper, WikipediaAPIWrapper
from langchain.agents import Tool, AgentExecutor, ConversationalAgent, initialize_agent
from langchain.memory import ConversationBufferMemory
from langchain.tools import Tool
from google.generativeai.types import HarmCategory, HarmBlockThreshold
from PIL import Image
import os
import tempfile
import time
import re
import json
from typing import List, Optional, Dict, Any
from urllib.parse import urlparse
import requests
import yt_dlp
from bs4 import BeautifulSoup
from difflib import SequenceMatcher
class Agent:
def __init__(self, model_name:str ="gemini", api_key:str ="BasicAgent"):
self.model = model_name
self.api_key = api_key
# if model_name starts with "gemini", use the gemini agent
self.tools = [
Tool(
name='web_search',
func=self._web_search,
description="A tool to search the web for information."
),
Tool(
name='analyze_video',
func=self._analyze_video,
description="A tool to analyze video content."
),
Tool(
name='analyze_image',
func=self._analyze_image,
description="A tool to analyze image content."
),
Tool(
name='analyze_list',
func=self._analyze_list,
description="A tool to analyze a list."
),
Tool(
name='analyze_table',
func=self._analyze_table,
description="A tool to analyze a table."
),
Tool(
name='analyze_text',
func=self._analyze_text,
description="A tool to analyze text content."
),
Tool(
name='analyze_url',
func=self._analyze_url,
description="A tool to analyze a URL."
),
Tool(
name='wikipedia_search',
func=WikipediaAPIWrapper().run,
description="A tool to search Wikipedia."
),
]
self.memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key="output",
input_key="input"
)
self.llm = self._initialize_model(model_name, api_key)
self.agent = initialize_agent()
def _initialize_model(self, model_name:str, api_key:str):
if model_name.startswith("gemini"):
return self._initialize_gemini(model_name)
else:
raise ValueError(f"Unsupported model name: {model_name}. Please use a valid model name.")
def _initialize_gemini(self, model_name:str = "gemini-2.0-flash"):
generation_config = {
"temperature": 0.0,
"max_output_tokens": 2000,
"candidate_count": 1,
}
safety_settings = {
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE,
}
return ChatGoogleGenerativeAI(
model=model_name,
google_api_key=self.api_key,
temperature=0,
max_output_tokens=2000,
generation_config=generation_config,
safety_settings=safety_settings,
system_message=SystemMessage(content=(
"You are a precise AI assistant that helps users find information and analyze content. "
"You can directly understand and analyze YouTube videos, images, and other content. "
"When analyzing videos, focus on relevant details like dialogue, text, and key visual elements. "
"For lists, tables, and structured data, ensure proper formatting and organization. "
"If you need additional context, clearly explain what is needed."
))
)
def initialize_agent(self):
PREAMBLE = (
"You are a helpful assistant. You can use the tools provided to search the web, analyze videos, images, lists, and tables. "
"Please provide clear and concise answers."
"TOOLS: You have access to the following tools: "
)
FORMAT_PROMPT = (
"To use a tool, follow this format: "
"Though: Do I need to use a tool? "
"Action: the action to take, should be one of the {{tool_names}} "
"Action Input: the input to the action "
"Observation: the result of the action "
"When you have the final answer or if you don't need to use a tool, you MUST use the format: "
"Thought: Do I need to use a tool? "
"Final Answer: {your final response} "
""
)
POSTFIX = (
"Previous conersation: {chat_history} "
"{chat_history} "
"New question: {input} "
"{agent_scratchpad} "
)
agent = ConversationalAgent.from_agent_and_tools(
llm=self.llm,
tools=self.tools,
prefix=PREAMBLE,
suffix=POSTFIX,
format_instructions=FORMAT_PROMPT,
handle_tool_errors=True,
input_variables=["input", "chat_history", "agent_scratchpad", "tool_names"],
)
return AgentExecutor.from_agent_and_tools(
agent=agent,
tools=self.tools,
memory=self.memory,
verbose=True,
handle_parsing_errors=True,
max_iterations=3,
return_only_outputs=True,
)
def run(self, query: str) -> str:
"""
Run the agent with the given input text.
"""
max_retries = 3
retry_delay = 2
for attempt in range(max_retries):
try:
result = self.agent.run(input=query)
return result
except Exception as e:
sleep_time = retry_delay * (attempt + 1)
print(f"Attempt {attempt + 1} failed: {e}. Retrying in {sleep_time} seconds...")
time.sleep(sleep_time)
continue
return f"Error: request failed after {max_retries} attempts. Please try again later."
print(f"All questions have been answered.")
def _web_search(self, query: str, site: Optional[str] = None) -> str:
"""
Perform a web search using DuckDuckGo and return the top result.
"""
search = DuckDuckGoSearchAPIWrapper(max_results=5)
results = search.run(f"{query} {f'site:{site}' if site else ''}")
if results:
return results
else:
return "No results found."
def _analyze_video(self, video_url: str) -> str:
"""
Analyze a YouTube video and return the transcript.
"""
ydl_opts = {
'quiet': True,
'skip_download': True,
'no_warnings': True,
'extract_flat': True,
'no_playlist': True,
'youtube_include_dash_manifest': False
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
try:
info = ydl.extract_info(video_url, download=False, process=False)
if 'entries' in info:
info = info['entries'][0]
title = info.get('title', 'No title available.')
description = info.get('description', 'No transcript available.')
prompt = f"""Please analyze this YouTube video:
Title: {title}
URL: {video_url}
Description: {description}
Please provide a detailed analysis focusing on:
1. Main topic and key points from the title and description
2. Expected visual elements and scenes
3. Overall message or purpose
4. Target audience"""
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
except Exception as e:
if 'Sign in to confirm' in str(e):
return "This video requires sign-in. Please provide a different video URL."
return f"Error accessing video: {str(e)}"
def _analyze_image(self, image_url: str) -> str:
"""
Analyze an image and return a description.
"""
try:
response = requests.get(image_url)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=True) as temp_file:
temp_file.write(response.content)
temp_file.flush()
image = Image.open(temp_file.name)
prompt = f"Please analyze this image: {image_url}. Provide a detailed description of the content with focus on the following aspects:\n1. Main subjects and objects in the image\n2. Colors, textures, and patterns\n3. Overall mood or atmosphere\n4. Any text or symbols present in the image\n5. Possible context or background information"
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
else:
return f"Error accessing image: {response.status_code}"
except Exception as e:
return f"Error processing image: {str(e)}"
def _analyze_list(self, input_list: List[str]) -> str:
"""
Analyze a list and return a summary.
"""
prompt = f"Please analyze this list: {input_list}. Provide a detailed summary focusing on:\n1. Main themes or categories\n2. Key items or elements\n3. Possible relationships or connections\n4. Any patterns or trends observed"
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
def _analyze_table(self, input_table: List[List[Any]]) -> str:
"""
Analyze a table and return a summary.
"""
prompt = f"Please analyze this table: {input_table}. Provide a detailed summary focusing on:\n1. Main themes or categories\n2. Key items or elements\n3. Possible relationships or connections\n4. Any patterns or trends observed"
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
def _analyze_text(self, text: str) -> str:
"""
Analyze a text and return a summary.
"""
prompt = f"Please analyze this text: {text}. Provide a detailed summary focusing on:\n1. Main themes or categories\n2. Key items or elements\n3. Possible relationships or connections\n4. Any patterns or trends observed"
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
def _analyze_url(self, url: str) -> str:
"""
Analyze a URL and return a summary.
"""
try:
response = requests.get(url)
if response.status_code == 200:
content = response.text
soup = BeautifulSoup(content, 'html.parser')
text = soup.get_text()
prompt = f"Please analyze this URL: {url}. Provide a detailed summary focusing on:\n1. Main themes or categories\n2. Key items or elements\n3. Possible relationships or connections\n4. Any patterns or trends observed"
messages = [HumanMessage(content=prompt)]
response = self.llm.invoke(messages)
return response.content if hasattr(response, 'content') else str(response)
else:
return f"Error accessing URL: {response.status_code}"
except Exception as e:
return f"Error processing URL: {str(e)}"
|