arjunanand13 commited on
Commit
7e7bdb9
·
verified ·
1 Parent(s): c6b3fa0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -150
app.py CHANGED
@@ -1,6 +1,7 @@
1
  import os
2
  import multiprocessing
3
  import concurrent.futures
 
4
  from langchain_community.document_loaders import TextLoader, DirectoryLoader
5
  from langchain.text_splitter import RecursiveCharacterTextSplitter
6
  from transformers import AutoModel, AutoTokenizer
@@ -14,15 +15,12 @@ import json
14
  import gradio as gr
15
  import re
16
  from threading import Thread
 
17
 
18
  class DocumentRetrievalAndGeneration:
19
  def __init__(self, embedding_model_name, lm_model_id, data_folder):
20
  self.all_splits = self.load_documents(data_folder)
21
-
22
- # Get token from HF Spaces environment
23
  hf_token = os.getenv('HF_TOKEN')
24
- print(f"Token found: {hf_token is not None}")
25
-
26
  self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, token=hf_token)
27
  self.embedding_model = AutoModel.from_pretrained(embedding_model_name, token=hf_token)
28
  self.gpu_index = self.create_faiss_index()
@@ -36,9 +34,9 @@ class DocumentRetrievalAndGeneration:
36
  print('Length of documents:', len(documents))
37
  print("LEN of all_splits", len(all_splits))
38
  for i in range(min(3, len(all_splits))):
39
- print(all_splits[i].page_content[:200] + "...")
40
  return all_splits
41
-
42
  def encode_texts(self, texts):
43
  encoded_input = self.embedding_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
44
  with torch.no_grad():
@@ -54,29 +52,28 @@ class DocumentRetrievalAndGeneration:
54
 
55
  def create_faiss_index(self):
56
  all_texts = [split.page_content for split in self.all_splits]
57
-
58
- batch_size = 512 # Reduced for Spaces
59
  all_embeddings = []
60
-
61
  for i in range(0, len(all_texts), batch_size):
62
  batch_texts = all_texts[i:i+batch_size]
63
  batch_embeddings = self.encode_texts(batch_texts)
64
  all_embeddings.append(batch_embeddings)
65
  print(f"Processed batch {i//batch_size + 1}/{(len(all_texts) + batch_size - 1)//batch_size}")
66
-
67
  embeddings = np.vstack(all_embeddings)
68
  index = faiss.IndexFlatL2(embeddings.shape[1])
69
  index.add(embeddings)
70
-
71
- # Try GPU first, fallback to CPU if fails
72
  try:
73
  if torch.cuda.is_available():
74
  gpu_resource = faiss.StandardGpuResources()
75
  gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
76
- print("🚀 Using GPU for FAISS")
77
  return gpu_index
78
  else:
79
- print("💻 Using CPU for FAISS")
80
  return index
81
  except Exception as e:
82
  print(f"GPU FAISS failed: {e}, using CPU")
@@ -89,17 +86,15 @@ class DocumentRetrievalAndGeneration:
89
  bnb_4bit_quant_type="nf4",
90
  bnb_4bit_compute_dtype=torch.bfloat16
91
  )
92
-
93
- hf_token = os.getenv('HF_TOKEN')
94
- print(f"LLM Token found: {hf_token is not None}")
95
- print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")
96
-
97
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
98
-
99
- # Handle pad_token for latest transformers
100
  if tokenizer.pad_token is None:
101
  tokenizer.pad_token = tokenizer.eos_token
102
-
103
  model = AutoModelForCausalLM.from_pretrained(
104
  model_id,
105
  torch_dtype=torch.bfloat16,
@@ -107,11 +102,9 @@ class DocumentRetrievalAndGeneration:
107
  quantization_config=quantization_config,
108
  token=hf_token
109
  )
110
-
111
- print(f"🦙 Model loaded on: {model.device}")
112
  return tokenizer, model
113
 
114
- def generate_response_with_timeout(self, input_ids, max_new_tokens=800):
115
  try:
116
  streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
117
  generate_kwargs = dict(
@@ -122,149 +115,121 @@ class DocumentRetrievalAndGeneration:
122
  top_k=20,
123
  temperature=0.8,
124
  repetition_penalty=1.2,
125
- pad_token_id=self.tokenizer.eos_token_id,
126
- eos_token_id=self.tokenizer.eos_token_id,
127
  streamer=streamer,
128
  )
129
-
130
  thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
131
  thread.start()
132
-
133
  generated_text = ""
134
  for new_text in streamer:
135
  generated_text += new_text
136
-
137
- thread.join()
138
  return generated_text
139
  except Exception as e:
140
- print(f"Error in generation: {str(e)}")
141
  return "Text generation process encountered an error"
142
 
143
  def query_and_generate_response(self, query):
144
- if not query.strip():
145
- return "Please enter a valid query", ""
146
-
147
- try:
148
- similarityThreshold = 1.0
149
- query_embedding = self.encode_texts([query])[0]
150
- distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
151
- print("Distance", distances, "indices", indices)
152
-
153
- content = ""
154
- for idx, distance in zip(indices[0], distances[0]):
155
- content += "-" * 50 + "\n"
156
- content += self.all_splits[idx].page_content + "\n"
157
- print(f"📄 Chunk {idx} (distance: {distance:.3f})")
158
-
159
- conversation = [
160
- {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
161
- {"role": "user", "content": f"""
162
- I need you to answer my question and provide related information in a specific format.
163
- I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
164
- RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
165
- IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
166
- DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
167
-
168
- Here's my question:
169
- Query: {query}
170
- Solution==>
171
- """}
172
- ]
173
-
174
- input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
175
-
176
- start_time = datetime.now()
177
- generated_response = self.generate_response_with_timeout(input_ids)
178
- elapsed_time = datetime.now() - start_time
179
-
180
- print("Generated response:", generated_response)
181
- print("Time elapsed:", elapsed_time)
182
-
183
- solution_text = generated_response.strip()
184
- if "Solution:" in solution_text:
185
- solution_text = solution_text.split("Solution:", 1)[1].strip()
186
-
187
- # Post-processing to remove "assistant" prefix
188
- solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
189
- solution_text = solution_text.strip()
190
-
191
- return solution_text, content[:1000] + "..." if len(content) > 1000 else content
192
-
193
- except Exception as e:
194
- print(f"Error in query processing: {e}")
195
- return f"Error processing query: {str(e)}", ""
196
 
197
  def qa_infer_gradio(self, query):
198
  response = self.query_and_generate_response(query)
199
  return response
200
 
201
- # Initialize the system
202
- print("Initializing TI E2E Forum Assistant...")
 
 
203
 
204
- embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2' # More compatible model
205
- lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
206
- data_folder = 'sample_embedding_folder2' # Make sure this folder exists
207
-
208
- try:
209
  doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
210
- print("System initialized successfully!")
211
-
212
- # Your exact same CSS and examples
213
- css_code = """
214
- .gradio-container {
215
- background-color: #daccdb;
216
- }
217
- button {
218
- background-color: #927fc7;
219
- color: black;
220
- border: 1px solid black;
221
- padding: 10px;
222
- margin-right: 10px;
223
- font-size: 16px;
224
- font-weight: bold;
225
- }
226
- """
227
-
228
- EXAMPLES = [
229
- "On which devices can the VIP and CSI2 modules operate simultaneously?",
230
- "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
231
- "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
232
- ]
233
 
234
- interface = gr.Interface(
235
- fn=doc_retrieval_gen.qa_infer_gradio,
236
- inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here", lines=3)],
237
- allow_flagging='never',
238
- examples=EXAMPLES,
239
- cache_examples=False,
240
- outputs=[
241
- gr.Textbox(label="RESPONSE", lines=8),
242
- gr.Textbox(label="RELATED QUERIES", lines=5)
243
- ],
244
- css=css_code,
245
- title="🤖 TI E2E FORUM",
246
- description="Ask technical questions and get answers based on the TI E2E knowledge base"
247
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
248
 
249
- # Launch with public link for Spaces
250
- interface.launch(
251
- server_name="0.0.0.0",
252
- server_port=7860,
253
- share=False
254
- )
255
-
256
- except Exception as e:
257
- print(f"Failed to initialize: {e}")
258
-
259
- # Fallback simple interface
260
- def fallback_response(query):
261
- return "System initialization failed. Please check the logs.", ""
262
-
263
- fallback_interface = gr.Interface(
264
- fn=fallback_response,
265
- inputs=[gr.Textbox(label="QUERY")],
266
- outputs=[gr.Textbox(label="ERROR"), gr.Textbox(label="INFO")],
267
- title="TI E2E FORUM - Initialization Error"
268
- )
269
-
270
- fallback_interface.launch(server_name="0.0.0.0", server_port=7860)
 
1
  import os
2
  import multiprocessing
3
  import concurrent.futures
4
+ # from langchain.document_loaders import TextLoader, DirectoryLoader
5
  from langchain_community.document_loaders import TextLoader, DirectoryLoader
6
  from langchain.text_splitter import RecursiveCharacterTextSplitter
7
  from transformers import AutoModel, AutoTokenizer
 
15
  import gradio as gr
16
  import re
17
  from threading import Thread
18
+ import os
19
 
20
  class DocumentRetrievalAndGeneration:
21
  def __init__(self, embedding_model_name, lm_model_id, data_folder):
22
  self.all_splits = self.load_documents(data_folder)
 
 
23
  hf_token = os.getenv('HF_TOKEN')
 
 
24
  self.embedding_tokenizer = AutoTokenizer.from_pretrained(embedding_model_name, token=hf_token)
25
  self.embedding_model = AutoModel.from_pretrained(embedding_model_name, token=hf_token)
26
  self.gpu_index = self.create_faiss_index()
 
34
  print('Length of documents:', len(documents))
35
  print("LEN of all_splits", len(all_splits))
36
  for i in range(min(3, len(all_splits))):
37
+ print(all_splits[i].page_content)
38
  return all_splits
39
+
40
  def encode_texts(self, texts):
41
  encoded_input = self.embedding_tokenizer(texts, padding=True, truncation=True, max_length=512, return_tensors='pt')
42
  with torch.no_grad():
 
52
 
53
  def create_faiss_index(self):
54
  all_texts = [split.page_content for split in self.all_splits]
55
+
56
+ batch_size = 256
57
  all_embeddings = []
58
+
59
  for i in range(0, len(all_texts), batch_size):
60
  batch_texts = all_texts[i:i+batch_size]
61
  batch_embeddings = self.encode_texts(batch_texts)
62
  all_embeddings.append(batch_embeddings)
63
  print(f"Processed batch {i//batch_size + 1}/{(len(all_texts) + batch_size - 1)//batch_size}")
64
+
65
  embeddings = np.vstack(all_embeddings)
66
  index = faiss.IndexFlatL2(embeddings.shape[1])
67
  index.add(embeddings)
68
+
 
69
  try:
70
  if torch.cuda.is_available():
71
  gpu_resource = faiss.StandardGpuResources()
72
  gpu_index = faiss.index_cpu_to_gpu(gpu_resource, 0, index)
73
+ print("Using GPU for FAISS")
74
  return gpu_index
75
  else:
76
+ print("Using CPU for FAISS")
77
  return index
78
  except Exception as e:
79
  print(f"GPU FAISS failed: {e}, using CPU")
 
86
  bnb_4bit_quant_type="nf4",
87
  bnb_4bit_compute_dtype=torch.bfloat16
88
  )
89
+ hf_token = "replace_your_token_here"
90
+ print(f"Token found: {hf_token is not None}")
91
+ print(f"LLM Token found: {hf_token is not None}")
92
+ print(f"Token starts with: {hf_token[:10] if hf_token else 'None'}...")
 
93
  tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_token)
94
+
 
95
  if tokenizer.pad_token is None:
96
  tokenizer.pad_token = tokenizer.eos_token
97
+
98
  model = AutoModelForCausalLM.from_pretrained(
99
  model_id,
100
  torch_dtype=torch.bfloat16,
 
102
  quantization_config=quantization_config,
103
  token=hf_token
104
  )
 
 
105
  return tokenizer, model
106
 
107
+ def generate_response_with_timeout(self, input_ids, max_new_tokens=1000):
108
  try:
109
  streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
110
  generate_kwargs = dict(
 
115
  top_k=20,
116
  temperature=0.8,
117
  repetition_penalty=1.2,
118
+ pad_token_id=self.tokenizer.eos_token_id,
119
+ eos_token_id=self.tokenizer.eos_token_id,
120
  streamer=streamer,
121
  )
122
+
123
  thread = Thread(target=self.model.generate, kwargs=generate_kwargs)
124
  thread.start()
125
+
126
  generated_text = ""
127
  for new_text in streamer:
128
  generated_text += new_text
129
+
130
+ thread.join()
131
  return generated_text
132
  except Exception as e:
133
+ print(f"Error in generate_response_with_timeout: {str(e)}")
134
  return "Text generation process encountered an error"
135
 
136
  def query_and_generate_response(self, query):
137
+ similarityThreshold = 1
138
+ query_embedding = self.encode_texts([query])[0]
139
+ distances, indices = self.gpu_index.search(np.array([query_embedding]), k=3)
140
+ print("Distance", distances, "indices", indices)
141
+ content = ""
142
+ filtered_results = []
143
+ for idx, distance in zip(indices[0], distances[0]):
144
+ if distance <= similarityThreshold:
145
+ filtered_results.append(idx)
146
+ for i in filtered_results:
147
+ print(self.all_splits[i].page_content)
148
+ content += "-" * 50 + "\n"
149
+ content += self.all_splits[idx].page_content + "\n"
150
+ print("CHUNK", idx)
151
+ print("Distance:", distance)
152
+ print("indices:", indices)
153
+ print(self.all_splits[idx].page_content)
154
+ print("############################")
155
+
156
+ conversation = [
157
+ {"role": "system", "content": "You are a knowledgeable assistant with access to a comprehensive database."},
158
+ {"role": "user", "content": f"""
159
+ I need you to answer my question and provide related information in a specific format.
160
+ I have provided five relatable json files {content}, choose the most suitable chunks for answering the query.
161
+ RETURN ONLY SOLUTION without additional comments, sign-offs, retrived chunks, refrence to any Ticket or extra phrases. Be direct and to the point.
162
+ IF THERE IS NO ANSWER RELATABLE IN RETRIEVED CHUNKS, RETURN "NO SOLUTION AVAILABLE".
163
+ DO NOT GIVE REFRENCE TO ANY CHUNKS OR TICKETS,BE ON POINT.
164
+
165
+ Here's my question:
166
+ Query: {query}
167
+ Solution==>
168
+ """}
169
+ ]
170
+
171
+ input_ids = self.tokenizer.apply_chat_template(conversation, return_tensors="pt").to(self.model.device)
172
+
173
+ start_time = datetime.now()
174
+ generated_response = self.generate_response_with_timeout(input_ids)
175
+ elapsed_time = datetime.now() - start_time
176
+
177
+ print("Generated response:", generated_response)
178
+ print("Time elapsed:", elapsed_time)
179
+ print("Device in use:", self.model.device)
180
+
181
+ solution_text = generated_response.strip()
182
+ if "Solution:" in solution_text:
183
+ solution_text = solution_text.split("Solution:", 1)[1].strip()
184
+
185
+ solution_text = re.sub(r'^assistant\s*', '', solution_text, flags=re.IGNORECASE)
186
+ solution_text = solution_text.strip()
187
+
188
+ return solution_text, content
189
 
190
  def qa_infer_gradio(self, query):
191
  response = self.query_and_generate_response(query)
192
  return response
193
 
194
+ if __name__ == "__main__":
195
+ embedding_model_name = 'sentence-transformers/all-MiniLM-L6-v2'
196
+ lm_model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct"
197
+ data_folder = 'sample_embedding_folder2'
198
 
 
 
 
 
 
199
  doc_retrieval_gen = DocumentRetrievalAndGeneration(embedding_model_name, lm_model_id, data_folder)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
200
 
201
+ def launch_interface():
202
+ css_code = """
203
+ .gradio-container {
204
+ background-color: #daccdb;
205
+ }
206
+ button {
207
+ background-color: #927fc7;
208
+ color: black;
209
+ border: 1px solid black;
210
+ padding: 10px;
211
+ margin-right: 10px;
212
+ font-size: 16px;
213
+ font-weight: bold;
214
+ }
215
+ """
216
+ EXAMPLES = [
217
+ "On which devices can the VIP and CSI2 modules operate simultaneously?",
218
+ "I'm using Code Composer Studio 5.4.0.00091 and enabled FPv4SPD16 floating point support for CortexM4 in TDA2. However, after building the project, the .asm file shows --float_support=vfplib instead of FPv4SPD16. Why is this happening?",
219
+ "Could you clarify the maximum number of cameras that can be connected simultaneously to the video input ports on the TDA2x SoC, considering it supports up to 10 multiplexed input ports and includes 3 dedicated video input modules?"
220
+ ]
221
+
222
+ interface = gr.Interface(
223
+ fn=doc_retrieval_gen.qa_infer_gradio,
224
+ inputs=[gr.Textbox(label="QUERY", placeholder="Enter your query here")],
225
+ allow_flagging='never',
226
+ examples=EXAMPLES,
227
+ cache_examples=False,
228
+ outputs=[gr.Textbox(label="RESPONSE"), gr.Textbox(label="RELATED QUERIES")],
229
+ css=css_code,
230
+ title="TI E2E FORUM"
231
+ )
232
+
233
+ interface.launch(debug=True)
234
 
235
+ launch_interface()