Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,12 @@ from langchain.vectorstores import FAISS
|
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
import gradio as gr
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 10 |
-
from sentence_transformers import CrossEncoder
|
| 11 |
|
|
|
|
|
|
|
| 12 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 13 |
|
|
|
|
| 14 |
class StopOnTokens(StoppingCriteria):
|
| 15 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 16 |
for stop_ids in stop_token_ids:
|
|
@@ -18,9 +20,11 @@ class StopOnTokens(StoppingCriteria):
|
|
| 18 |
return True
|
| 19 |
return False
|
| 20 |
|
|
|
|
| 21 |
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
| 22 |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
| 23 |
|
|
|
|
| 24 |
bnb_config = BitsAndBytesConfig(
|
| 25 |
load_in_4bit=True,
|
| 26 |
bnb_4bit_quant_type='nf4',
|
|
@@ -31,11 +35,13 @@ bnb_config = BitsAndBytesConfig(
|
|
| 31 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
| 32 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
| 33 |
|
|
|
|
| 34 |
stop_list = ['\nHuman:', '\n```\n']
|
| 35 |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
| 36 |
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
| 37 |
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
| 38 |
|
|
|
|
| 39 |
generate_text = pipeline(
|
| 40 |
model=model,
|
| 41 |
tokenizer=tokenizer,
|
|
@@ -49,21 +55,19 @@ generate_text = pipeline(
|
|
| 49 |
|
| 50 |
llm = HuggingFacePipeline(pipeline=generate_text)
|
| 51 |
|
| 52 |
-
|
| 53 |
try:
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
print("Loaded embeddings from FAISS Index successfully")
|
| 57 |
except ImportError as e:
|
| 58 |
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
| 59 |
raise e
|
| 60 |
|
|
|
|
| 61 |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
| 62 |
|
| 63 |
chat_history = []
|
| 64 |
|
| 65 |
-
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
|
| 66 |
-
|
| 67 |
def format_prompt(query):
|
| 68 |
prompt = f"""
|
| 69 |
You are a knowledgeable assistant with access to a comprehensive database.
|
|
@@ -84,19 +88,8 @@ def format_prompt(query):
|
|
| 84 |
|
| 85 |
def qa_infer(query):
|
| 86 |
formatted_prompt = format_prompt(query)
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
documents = results['source_documents']
|
| 90 |
-
query_document_pairs = [[query, doc.page_content] for doc in documents]
|
| 91 |
-
scores = reranker.predict(query_document_pairs)
|
| 92 |
-
|
| 93 |
-
"""Sort documents based on the re-ranker scores"""
|
| 94 |
-
ranked_docs = sorted(zip(scores, documents), key=lambda x: x[0], reverse=True)
|
| 95 |
-
|
| 96 |
-
"""Extract the best document"""
|
| 97 |
-
best_doc = ranked_docs[0][1].page_content if ranked_docs else ""
|
| 98 |
-
|
| 99 |
-
return best_doc
|
| 100 |
|
| 101 |
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
| 102 |
"Can BQ25896 support I2C interface?",
|
|
@@ -104,3 +97,103 @@ EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
|
| 104 |
|
| 105 |
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
| 106 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
import gradio as gr
|
| 9 |
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
|
| 10 |
|
| 11 |
+
|
| 12 |
+
# Load the Hugging Face token from environment
|
| 13 |
HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 14 |
|
| 15 |
+
# Define stopping criteria
|
| 16 |
class StopOnTokens(StoppingCriteria):
|
| 17 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 18 |
for stop_ids in stop_token_ids:
|
|
|
|
| 20 |
return True
|
| 21 |
return False
|
| 22 |
|
| 23 |
+
# Load the LLaMA model and tokenizer
|
| 24 |
model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
| 25 |
device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
| 26 |
|
| 27 |
+
# Set quantization configuration
|
| 28 |
bnb_config = BitsAndBytesConfig(
|
| 29 |
load_in_4bit=True,
|
| 30 |
bnb_4bit_quant_type='nf4',
|
|
|
|
| 35 |
tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
| 36 |
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
| 37 |
|
| 38 |
+
# Define stopping criteria
|
| 39 |
stop_list = ['\nHuman:', '\n```\n']
|
| 40 |
stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
| 41 |
stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
| 42 |
stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
| 43 |
|
| 44 |
+
# Create text generation pipeline
|
| 45 |
generate_text = pipeline(
|
| 46 |
model=model,
|
| 47 |
tokenizer=tokenizer,
|
|
|
|
| 55 |
|
| 56 |
llm = HuggingFacePipeline(pipeline=generate_text)
|
| 57 |
|
| 58 |
+
# Load the stored FAISS index
|
| 59 |
try:
|
| 60 |
+
vectorstore = FAISS.load_local('faiss_index', HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"}))
|
| 61 |
+
print("Loaded embedding successfully")
|
|
|
|
| 62 |
except ImportError as e:
|
| 63 |
print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
| 64 |
raise e
|
| 65 |
|
| 66 |
+
# Set up the Conversational Retrieval Chain
|
| 67 |
chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
| 68 |
|
| 69 |
chat_history = []
|
| 70 |
|
|
|
|
|
|
|
| 71 |
def format_prompt(query):
|
| 72 |
prompt = f"""
|
| 73 |
You are a knowledgeable assistant with access to a comprehensive database.
|
|
|
|
| 88 |
|
| 89 |
def qa_infer(query):
|
| 90 |
formatted_prompt = format_prompt(query)
|
| 91 |
+
result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
| 92 |
+
return result['answer']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
| 95 |
"Can BQ25896 support I2C interface?",
|
|
|
|
| 97 |
|
| 98 |
demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
| 99 |
demo.launch()
|
| 100 |
+
|
| 101 |
+
# import os
|
| 102 |
+
# import torch
|
| 103 |
+
# from torch import cuda, bfloat16
|
| 104 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, BitsAndBytesConfig, StoppingCriteria, StoppingCriteriaList
|
| 105 |
+
# from langchain.llms import HuggingFacePipeline
|
| 106 |
+
# from langchain.vectorstores import FAISS
|
| 107 |
+
# from langchain.chains import ConversationalRetrievalChain
|
| 108 |
+
# import gradio as gr
|
| 109 |
+
# from langchain.embeddings import HuggingFaceEmbeddings
|
| 110 |
+
|
| 111 |
+
# # Load the Hugging Face token from environment
|
| 112 |
+
# HF_TOKEN = os.environ.get("HF_TOKEN", None)
|
| 113 |
+
|
| 114 |
+
# # Define stopping criteria
|
| 115 |
+
# class StopOnTokens(StoppingCriteria):
|
| 116 |
+
# def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 117 |
+
# for stop_ids in stop_token_ids:
|
| 118 |
+
# if torch.eq(input_ids[0][-len(stop_ids):], stop_ids).all():
|
| 119 |
+
# return True
|
| 120 |
+
# return False
|
| 121 |
+
|
| 122 |
+
# # Load the LLaMA model and tokenizer
|
| 123 |
+
# model_id = 'meta-llama/Meta-Llama-3-8B-Instruct'
|
| 124 |
+
# device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu'
|
| 125 |
+
|
| 126 |
+
# # Set quantization configuration
|
| 127 |
+
# bnb_config = BitsAndBytesConfig(
|
| 128 |
+
# load_in_4bit=True,
|
| 129 |
+
# bnb_4bit_quant_type='nf4',
|
| 130 |
+
# bnb_4bit_use_double_quant=True,
|
| 131 |
+
# bnb_4bit_compute_dtype=bfloat16
|
| 132 |
+
# )
|
| 133 |
+
|
| 134 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN)
|
| 135 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", token=HF_TOKEN, quantization_config=bnb_config)
|
| 136 |
+
|
| 137 |
+
# # Define stopping criteria
|
| 138 |
+
# stop_list = ['\nHuman:', '\n```\n']
|
| 139 |
+
# stop_token_ids = [tokenizer(x)['input_ids'] for x in stop_list]
|
| 140 |
+
# stop_token_ids = [torch.LongTensor(x).to(device) for x in stop_token_ids]
|
| 141 |
+
# stopping_criteria = StoppingCriteriaList([StopOnTokens()])
|
| 142 |
+
|
| 143 |
+
# # Create text generation pipeline
|
| 144 |
+
# generate_text = pipeline(
|
| 145 |
+
# model=model,
|
| 146 |
+
# tokenizer=tokenizer,
|
| 147 |
+
# return_full_text=True,
|
| 148 |
+
# task='text-generation',
|
| 149 |
+
# stopping_criteria=stopping_criteria,
|
| 150 |
+
# temperature=0.1,
|
| 151 |
+
# max_new_tokens=512,
|
| 152 |
+
# repetition_penalty=1.1
|
| 153 |
+
# )
|
| 154 |
+
|
| 155 |
+
# llm = HuggingFacePipeline(pipeline=generate_text)
|
| 156 |
+
|
| 157 |
+
# # Load the stored FAISS index
|
| 158 |
+
# try:
|
| 159 |
+
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2", model_kwargs={"device": "cuda"})
|
| 160 |
+
# vectorstore = FAISS.load_local('faiss_index', embeddings)
|
| 161 |
+
# print("Loaded embedding successfully")
|
| 162 |
+
# except ImportError as e:
|
| 163 |
+
# print("FAISS could not be imported. Make sure FAISS is installed correctly.")
|
| 164 |
+
# raise e
|
| 165 |
+
|
| 166 |
+
# # Set up the Conversational Retrieval Chain
|
| 167 |
+
# chain = ConversationalRetrievalChain.from_llm(llm, vectorstore.as_retriever(), return_source_documents=True)
|
| 168 |
+
|
| 169 |
+
# chat_history = []
|
| 170 |
+
|
| 171 |
+
# def format_prompt(query):
|
| 172 |
+
# prompt = f"""
|
| 173 |
+
# You are a knowledgeable assistant with access to a comprehensive database.
|
| 174 |
+
# I need you to answer my question and provide related information in a specific format.
|
| 175 |
+
# Here's what I need:
|
| 176 |
+
# 1. A brief, general response to my question based on related answers retrieved.
|
| 177 |
+
# 2. A JSON-formatted output containing:
|
| 178 |
+
# - "question": The original question.
|
| 179 |
+
# - "answer": The detailed answer.
|
| 180 |
+
# - "related_questions": A list of related questions and their answers, each as a dictionary with the keys:
|
| 181 |
+
# - "question": The related question.
|
| 182 |
+
# - "answer": The related answer.
|
| 183 |
+
# Here's my question:
|
| 184 |
+
# {query}
|
| 185 |
+
# Include a brief final answer without additional comments, sign-offs, or extra phrases. Be direct and to the point.
|
| 186 |
+
# """
|
| 187 |
+
# return prompt
|
| 188 |
+
|
| 189 |
+
# def qa_infer(query):
|
| 190 |
+
# formatted_prompt = format_prompt(query)
|
| 191 |
+
# result = chain({"question": formatted_prompt, "chat_history": chat_history})
|
| 192 |
+
# return result['answer']
|
| 193 |
+
|
| 194 |
+
# EXAMPLES = ["How to use IPU1_0 instead of A15_0 to process NDK in TDA2x-EVM",
|
| 195 |
+
# "Can BQ25896 support I2C interface?",
|
| 196 |
+
# "Does TDA2 vout support bt656 8-bit mode?"]
|
| 197 |
+
|
| 198 |
+
# demo = gr.Interface(fn=qa_infer, inputs="text", allow_flagging='never', examples=EXAMPLES, cache_examples=False, outputs="text")
|
| 199 |
+
# demo.launch()
|