import gradio as gr import io import numpy as np import torch from decord import cpu, VideoReader, bridge from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import BitsAndBytesConfig import json # Model Configuration MODEL_PATH = "THUDM/cogvlm2-llama3-caption" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16 # Define delay reasons for each step DELAY_REASONS = { "Step 1": ["No raw material available", "Person repatching the tire"], "Step 2": ["Person repatching the tire", "Lack of raw material"], "Step 3": ["Person repatching the tire", "Lack of raw material"], "Step 4": ["Person repatching the tire", "Lack of raw material"], "Step 5": ["Person repatching the tire", "Lack of raw material"], "Step 6": ["Person repatching the tire", "Lack of raw material"], "Step 7": ["Person repatching the tire", "Lack of raw material"], "Step 8": ["No person available to collect tire", "Person repatching the tire"] } def load_video(video_data, strategy='chat'): bridge.set_bridge('torch') mp4_stream = video_data num_frames = 24 decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) frame_id_list = [] total_frames = len(decord_vr) timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))] max_second = round(max(timestamps)) + 1 for second in range(max_second): closest_num = min(timestamps, key=lambda x: abs(x - second)) index = timestamps.index(closest_num) frame_id_list.append(index) if len(frame_id_list) >= num_frames: break video_data = decord_vr.get_batch(frame_id_list) video_data = video_data.permute(3, 0, 1, 2) return video_data def load_model(): quantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=TORCH_TYPE, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4" ) tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, quantization_config=quantization_config, device_map="auto" ).eval() return model, tokenizer def predict(prompt, video_data, temperature, model, tokenizer): video = load_video(video_data, strategy='chat') inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=prompt, images=[video], history=[], template_version='chat' ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 2048, "pad_token_id": 128002, "top_k": 1, "do_sample": False, "top_p": 0.1, "temperature": temperature, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) return response def get_analysis_prompt(step_number, possible_reasons): return f"""Analyze the video of Step {step_number} in the tire manufacturing process. Possible delay reasons for this step are: {', '.join(possible_reasons)} Based on the video evidence, determine which of these reasons best explains the delay. Please provide: 1. Your chosen reason from the list above 2. Specific visual evidence supporting this choice 3. Brief explanation of why other reasons are less likely Focus your analysis on visual cues that support your conclusion.""" def inference(video, step_number, selected_reason): if not video: return "Please upload a video first." try: model, tokenizer = load_model() video_data = video.read() # Get possible reasons for the selected step possible_reasons = DELAY_REASONS[step_number] # Generate the analysis prompt prompt = get_analysis_prompt(step_number, possible_reasons) # Get model prediction temperature = 0.8 response = predict(prompt, video_data, temperature, model, tokenizer) return response except Exception as e: return f"An error occurred: {str(e)}" def update_reasons(step): """Update the dropdown choices based on the selected step""" return gr.Dropdown(choices=DELAY_REASONS[step]) # Gradio Interface def create_interface(): with gr.Blocks() as demo: with gr.Row(): with gr.Column(): video = gr.Video(label="Upload Manufacturing Video", sources=["upload"]) step_number = gr.Dropdown( choices=list(DELAY_REASONS.keys()), label="Manufacturing Step", value="Step 1" ) reason = gr.Dropdown( choices=DELAY_REASONS["Step 1"], label="Select Delay Reason", value=DELAY_REASONS["Step 1"][0] ) analyze_btn = gr.Button("Analyze Delay", variant="primary") with gr.Column(): output = gr.Textbox(label="Analysis Result", lines=10) # Update reasons when step changes step_number.change( fn=update_reasons, inputs=[step_number], outputs=[reason] ) # Trigger analysis when button is clicked analyze_btn.click( fn=inference, inputs=[video, step_number, reason], outputs=[output] ) return demo if __name__ == "__main__": demo = create_interface() demo.launch()