VishalD1234 commited on
Commit
913b673
·
verified ·
1 Parent(s): 3eb9137

Delete app2.py

Browse files
Files changed (1) hide show
  1. app2.py +0 -144
app2.py DELETED
@@ -1,144 +0,0 @@
1
- import gradio as gr
2
- import io
3
- import numpy as np
4
- import torch
5
- from decord import cpu, VideoReader, bridge
6
- from transformers import AutoModelForCausalLM, AutoTokenizer
7
- from transformers import BitsAndBytesConfig
8
- import json
9
-
10
- MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
11
- DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
12
- TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
13
-
14
- DELAY_REASONS = {
15
- "step1": {"reasons": ["No raw material available", "Person repatching the tire"]},
16
- "step2": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
17
- "step3": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
18
- "step4": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
19
- "step5": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
20
- "step6": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
21
- "step7": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
22
- "step8": {"reasons": ["No person available to collect tire", "Person repatching the tire"]}
23
- }
24
-
25
- with open('delay_reasons.json', 'w') as f:
26
- json.dump(DELAY_REASONS, f, indent=4)
27
-
28
- def load_video(video_data, strategy='chat'):
29
- bridge.set_bridge('torch')
30
- mp4_stream = video_data
31
- num_frames = 24
32
- decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
33
- frame_id_list = []
34
- total_frames = len(decord_vr)
35
- timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
36
- max_second = round(max(timestamps)) + 1
37
-
38
- for second in range(max_second):
39
- closest_num = min(timestamps, key=lambda x: abs(x - second))
40
- index = timestamps.index(closest_num)
41
- frame_id_list.append(index)
42
- if len(frame_id_list) >= num_frames:
43
- break
44
-
45
- video_data = decord_vr.get_batch(frame_id_list)
46
- video_data = video_data.permute(3, 0, 1, 2)
47
- return video_data
48
-
49
- def load_model():
50
- quantization_config = BitsAndBytesConfig(
51
- load_in_4bit=True,
52
- bnb_4bit_compute_dtype=TORCH_TYPE,
53
- bnb_4bit_use_double_quant=True,
54
- bnb_4bit_quant_type="nf4"
55
- )
56
- tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
57
- model = AutoModelForCausalLM.from_pretrained(
58
- MODEL_PATH,
59
- torch_dtype=TORCH_TYPE,
60
- trust_remote_code=True,
61
- quantization_config=quantization_config,
62
- device_map="auto"
63
- ).eval()
64
- return model, tokenizer
65
-
66
- def predict(prompt, video_data, temperature, model, tokenizer):
67
- strategy = 'chat'
68
- video = load_video(video_data, strategy=strategy)
69
- history = []
70
- inputs = model.build_conversation_input_ids(
71
- tokenizer=tokenizer,
72
- query=prompt,
73
- images=[video],
74
- history=history,
75
- template_version=strategy
76
- )
77
- inputs = {
78
- 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
79
- 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
80
- 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
81
- 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
82
- }
83
- gen_kwargs = {
84
- "max_new_tokens": 2048,
85
- "pad_token_id": 128002,
86
- "top_k": 1,
87
- "do_sample": False,
88
- "top_p": 0.1,
89
- "temperature": temperature,
90
- }
91
- with torch.no_grad():
92
- outputs = model.generate(**inputs, **gen_kwargs)
93
- outputs = outputs[:, inputs['input_ids'].shape[1]:]
94
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
95
- return response
96
-
97
- def get_base_prompt():
98
- return """You are an expert AI model trained to analyze and interpret manufacturing processes.
99
- The task is to evaluate video footage of specific steps in a tire manufacturing process.
100
- The process has 8 total steps, but only delayed steps are provided for analysis.
101
-
102
- **Your Goal:**
103
- 1. Analyze the provided video.
104
- 2. Identify possible reasons for the delay in the manufacturing step shown in the video.
105
- 3. Provide a clear explanation of the delay based on observed factors.
106
-
107
- **Context:**
108
- Tire manufacturing involves 8 steps, and delays may occur due to machinery faults,
109
- raw material availability, labor efficiency, or unexpected disruptions.
110
-
111
- **Output:**
112
- Explain why the delay occurred in this step. Include specific observations
113
- and their connection to the delay."""
114
-
115
- def inference(video, step_number, selected_reason):
116
- if not video:
117
- return "Please upload a video first."
118
- model, tokenizer = load_model()
119
- video_data = video.read()
120
- base_prompt = get_base_prompt()
121
- full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}"
122
- temperature = 0.8
123
- response = predict(full_prompt, video_data, temperature, model, tokenizer)
124
- return response
125
-
126
- with gr.Blocks() as demo:
127
- with gr.Row():
128
- with gr.Column():
129
- video = gr.Video(label="Video Input", sources=["upload"])
130
- step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1")
131
- reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0])
132
- analyze_btn = gr.Button("Analyze Delay", variant="primary")
133
- with gr.Column():
134
- output = gr.Textbox(label="Analysis Result")
135
-
136
- def update_reasons(step):
137
- step_num = step.lower().replace(" ", "")
138
- return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"])
139
-
140
- step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason])
141
- analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output])
142
-
143
- if __name__ == "__main__":
144
- demo.launch()