Spaces:
Runtime error
Runtime error
Delete app2.py
Browse files
app2.py
DELETED
|
@@ -1,144 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import io
|
| 3 |
-
import numpy as np
|
| 4 |
-
import torch
|
| 5 |
-
from decord import cpu, VideoReader, bridge
|
| 6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 7 |
-
from transformers import BitsAndBytesConfig
|
| 8 |
-
import json
|
| 9 |
-
|
| 10 |
-
MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
|
| 11 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
-
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
| 13 |
-
|
| 14 |
-
DELAY_REASONS = {
|
| 15 |
-
"step1": {"reasons": ["No raw material available", "Person repatching the tire"]},
|
| 16 |
-
"step2": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 17 |
-
"step3": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 18 |
-
"step4": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 19 |
-
"step5": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 20 |
-
"step6": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 21 |
-
"step7": {"reasons": ["Person repatching the tire", "Lack of raw material"]},
|
| 22 |
-
"step8": {"reasons": ["No person available to collect tire", "Person repatching the tire"]}
|
| 23 |
-
}
|
| 24 |
-
|
| 25 |
-
with open('delay_reasons.json', 'w') as f:
|
| 26 |
-
json.dump(DELAY_REASONS, f, indent=4)
|
| 27 |
-
|
| 28 |
-
def load_video(video_data, strategy='chat'):
|
| 29 |
-
bridge.set_bridge('torch')
|
| 30 |
-
mp4_stream = video_data
|
| 31 |
-
num_frames = 24
|
| 32 |
-
decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
|
| 33 |
-
frame_id_list = []
|
| 34 |
-
total_frames = len(decord_vr)
|
| 35 |
-
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
|
| 36 |
-
max_second = round(max(timestamps)) + 1
|
| 37 |
-
|
| 38 |
-
for second in range(max_second):
|
| 39 |
-
closest_num = min(timestamps, key=lambda x: abs(x - second))
|
| 40 |
-
index = timestamps.index(closest_num)
|
| 41 |
-
frame_id_list.append(index)
|
| 42 |
-
if len(frame_id_list) >= num_frames:
|
| 43 |
-
break
|
| 44 |
-
|
| 45 |
-
video_data = decord_vr.get_batch(frame_id_list)
|
| 46 |
-
video_data = video_data.permute(3, 0, 1, 2)
|
| 47 |
-
return video_data
|
| 48 |
-
|
| 49 |
-
def load_model():
|
| 50 |
-
quantization_config = BitsAndBytesConfig(
|
| 51 |
-
load_in_4bit=True,
|
| 52 |
-
bnb_4bit_compute_dtype=TORCH_TYPE,
|
| 53 |
-
bnb_4bit_use_double_quant=True,
|
| 54 |
-
bnb_4bit_quant_type="nf4"
|
| 55 |
-
)
|
| 56 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
| 57 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 58 |
-
MODEL_PATH,
|
| 59 |
-
torch_dtype=TORCH_TYPE,
|
| 60 |
-
trust_remote_code=True,
|
| 61 |
-
quantization_config=quantization_config,
|
| 62 |
-
device_map="auto"
|
| 63 |
-
).eval()
|
| 64 |
-
return model, tokenizer
|
| 65 |
-
|
| 66 |
-
def predict(prompt, video_data, temperature, model, tokenizer):
|
| 67 |
-
strategy = 'chat'
|
| 68 |
-
video = load_video(video_data, strategy=strategy)
|
| 69 |
-
history = []
|
| 70 |
-
inputs = model.build_conversation_input_ids(
|
| 71 |
-
tokenizer=tokenizer,
|
| 72 |
-
query=prompt,
|
| 73 |
-
images=[video],
|
| 74 |
-
history=history,
|
| 75 |
-
template_version=strategy
|
| 76 |
-
)
|
| 77 |
-
inputs = {
|
| 78 |
-
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
|
| 79 |
-
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
|
| 80 |
-
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
|
| 81 |
-
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
|
| 82 |
-
}
|
| 83 |
-
gen_kwargs = {
|
| 84 |
-
"max_new_tokens": 2048,
|
| 85 |
-
"pad_token_id": 128002,
|
| 86 |
-
"top_k": 1,
|
| 87 |
-
"do_sample": False,
|
| 88 |
-
"top_p": 0.1,
|
| 89 |
-
"temperature": temperature,
|
| 90 |
-
}
|
| 91 |
-
with torch.no_grad():
|
| 92 |
-
outputs = model.generate(**inputs, **gen_kwargs)
|
| 93 |
-
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
| 94 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 95 |
-
return response
|
| 96 |
-
|
| 97 |
-
def get_base_prompt():
|
| 98 |
-
return """You are an expert AI model trained to analyze and interpret manufacturing processes.
|
| 99 |
-
The task is to evaluate video footage of specific steps in a tire manufacturing process.
|
| 100 |
-
The process has 8 total steps, but only delayed steps are provided for analysis.
|
| 101 |
-
|
| 102 |
-
**Your Goal:**
|
| 103 |
-
1. Analyze the provided video.
|
| 104 |
-
2. Identify possible reasons for the delay in the manufacturing step shown in the video.
|
| 105 |
-
3. Provide a clear explanation of the delay based on observed factors.
|
| 106 |
-
|
| 107 |
-
**Context:**
|
| 108 |
-
Tire manufacturing involves 8 steps, and delays may occur due to machinery faults,
|
| 109 |
-
raw material availability, labor efficiency, or unexpected disruptions.
|
| 110 |
-
|
| 111 |
-
**Output:**
|
| 112 |
-
Explain why the delay occurred in this step. Include specific observations
|
| 113 |
-
and their connection to the delay."""
|
| 114 |
-
|
| 115 |
-
def inference(video, step_number, selected_reason):
|
| 116 |
-
if not video:
|
| 117 |
-
return "Please upload a video first."
|
| 118 |
-
model, tokenizer = load_model()
|
| 119 |
-
video_data = video.read()
|
| 120 |
-
base_prompt = get_base_prompt()
|
| 121 |
-
full_prompt = f"{base_prompt}\n\nAnalyzing Step {step_number}\nPossible reason: {selected_reason}"
|
| 122 |
-
temperature = 0.8
|
| 123 |
-
response = predict(full_prompt, video_data, temperature, model, tokenizer)
|
| 124 |
-
return response
|
| 125 |
-
|
| 126 |
-
with gr.Blocks() as demo:
|
| 127 |
-
with gr.Row():
|
| 128 |
-
with gr.Column():
|
| 129 |
-
video = gr.Video(label="Video Input", sources=["upload"])
|
| 130 |
-
step_number = gr.Dropdown(choices=[f"Step {i}" for i in range(1, 9)], label="Manufacturing Step", value="Step 1")
|
| 131 |
-
reason = gr.Dropdown(choices=DELAY_REASONS["step1"]["reasons"], label="Possible Delay Reason", value=DELAY_REASONS["step1"]["reasons"][0])
|
| 132 |
-
analyze_btn = gr.Button("Analyze Delay", variant="primary")
|
| 133 |
-
with gr.Column():
|
| 134 |
-
output = gr.Textbox(label="Analysis Result")
|
| 135 |
-
|
| 136 |
-
def update_reasons(step):
|
| 137 |
-
step_num = step.lower().replace(" ", "")
|
| 138 |
-
return gr.Dropdown(choices=DELAY_REASONS[step_num]["reasons"])
|
| 139 |
-
|
| 140 |
-
step_number.change(fn=update_reasons, inputs=[step_number], outputs=[reason])
|
| 141 |
-
analyze_btn.click(fn=inference, inputs=[video, step_number, reason], outputs=[output])
|
| 142 |
-
|
| 143 |
-
if __name__ == "__main__":
|
| 144 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|