VishalD1234 commited on
Commit
c079094
·
verified ·
1 Parent(s): 01e9f83

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +82 -37
app.py CHANGED
@@ -6,11 +6,10 @@ from decord import cpu, VideoReader, bridge
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
9
- MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat"
10
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
12
 
13
-
14
  def get_step_info(step_number):
15
  """Returns detailed information about a manufacturing step."""
16
  step_details = {
@@ -125,6 +124,87 @@ def get_step_info(step_number):
125
 
126
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  def get_analysis_prompt(step_number):
129
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
130
  step_info = get_step_info(step_number)
@@ -172,41 +252,6 @@ Output:
172
 
173
  model, tokenizer = load_model()
174
 
175
- def predict(prompt, video_data, temperature, model, tokenizer):
176
- """Generates predictions based on the video and textual prompt."""
177
- video = load_video(video_data, strategy='chat')
178
-
179
- inputs = model.build_conversation_input_ids(
180
- tokenizer=tokenizer,
181
- query=prompt,
182
- images=[video],
183
- history=[],
184
- template_version='chat'
185
- )
186
-
187
- inputs = {
188
- 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
189
- 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
190
- 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
191
- 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
192
- }
193
-
194
- gen_kwargs = {
195
- "max_new_tokens": 2048,
196
- "pad_token_id": 128002,
197
- "top_k": 1,
198
- "do_sample": False,
199
- "top_p": 0.1,
200
- "temperature": temperature,
201
- }
202
-
203
- with torch.no_grad():
204
- outputs = model.generate(**inputs, **gen_kwargs)
205
- outputs = outputs[:, inputs['input_ids'].shape[1]:]
206
- response = tokenizer.decode(outputs[0], skip_special_tokens=True)
207
-
208
- return response
209
-
210
  def inference(video, step_number):
211
  """Analyzes video to predict possible issues based on the manufacturing step."""
212
  try:
 
6
  from transformers import AutoModelForCausalLM, AutoTokenizer
7
  from transformers import BitsAndBytesConfig
8
 
9
+ MODEL_PATH = "THUDM/cogvlm2-llama3-caption"
10
  DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
11
  TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
12
 
 
13
  def get_step_info(step_number):
14
  """Returns detailed information about a manufacturing step."""
15
  step_details = {
 
124
 
125
  return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
126
 
127
+ def load_video(video_data, strategy='chat'):
128
+ """Loads and processes video data into a format suitable for model input."""
129
+ bridge.set_bridge('torch')
130
+ num_frames = 24
131
+
132
+ if isinstance(video_data, str):
133
+ decord_vr = VideoReader(video_data, ctx=cpu(0))
134
+ else:
135
+ decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
136
+
137
+ frame_id_list = []
138
+ total_frames = len(decord_vr)
139
+ timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
140
+ max_second = round(max(timestamps)) + 1
141
+
142
+ for second in range(max_second):
143
+ closest_num = min(timestamps, key=lambda x: abs(x - second))
144
+ index = timestamps.index(closest_num)
145
+ frame_id_list.append(index)
146
+ if len(frame_id_list) >= num_frames:
147
+ break
148
+
149
+ video_data = decord_vr.get_batch(frame_id_list)
150
+ video_data = video_data.permute(3, 0, 1, 2)
151
+ return video_data
152
+
153
+ def load_model():
154
+ """Loads the pre-trained model and tokenizer with quantization configurations."""
155
+ quantization_config = BitsAndBytesConfig(
156
+ load_in_4bit=True,
157
+ bnb_4bit_compute_dtype=TORCH_TYPE,
158
+ bnb_4bit_use_double_quant=True,
159
+ bnb_4bit_quant_type="nf4"
160
+ )
161
+
162
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
163
+ model = AutoModelForCausalLM.from_pretrained(
164
+ MODEL_PATH,
165
+ torch_dtype=TORCH_TYPE,
166
+ trust_remote_code=True,
167
+ quantization_config=quantization_config,
168
+ device_map="auto"
169
+ ).eval()
170
+
171
+ return model, tokenizer
172
+
173
+ def predict(prompt, video_data, temperature, model, tokenizer):
174
+ """Generates predictions based on the video and textual prompt."""
175
+ video = load_video(video_data, strategy='chat')
176
+
177
+ inputs = model.build_conversation_input_ids(
178
+ tokenizer=tokenizer,
179
+ query=prompt,
180
+ images=[video],
181
+ history=[],
182
+ template_version='chat'
183
+ )
184
+
185
+ inputs = {
186
+ 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
187
+ 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
188
+ 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
189
+ 'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
190
+ }
191
+
192
+ gen_kwargs = {
193
+ "max_new_tokens": 2048,
194
+ "pad_token_id": 128002,
195
+ "top_k": 1,
196
+ "do_sample": False,
197
+ "top_p": 0.1,
198
+ "temperature": temperature,
199
+ }
200
+
201
+ with torch.no_grad():
202
+ outputs = model.generate(**inputs, **gen_kwargs)
203
+ outputs = outputs[:, inputs['input_ids'].shape[1]:]
204
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
205
+
206
+ return response
207
+
208
  def get_analysis_prompt(step_number):
209
  """Constructs the prompt for analyzing delay reasons based on the selected step."""
210
  step_info = get_step_info(step_number)
 
252
 
253
  model, tokenizer = load_model()
254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
255
  def inference(video, step_number):
256
  """Analyzes video to predict possible issues based on the manufacturing step."""
257
  try: