Apollo_GenAI / app.py
VishalD1234's picture
Update app.py
1e45f28 verified
raw
history blame
12.7 kB
import gradio as gr
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
# Delay Reasons for Each Manufacturing Step
DELAY_REASONS = {
"Step 1": ["Delay in Bead Insertion", "Lack of raw material"],
"Step 2": ["Inner Liner Adjustment by Technician", "Person rebuilding defective Tire Sections"],
"Step 3": ["Manual Adjustment in Ply1 apply", "Technician repairing defective Tire Sections"],
"Step 4": ["Delay in Bead set", "Lack of raw material"],
"Step 5": ["Delay in Turnup", "Lack of raw material"],
"Step 6": ["Person Repairing sidewall", "Person rebuilding defective Tire Sections"],
"Step 7": ["Delay in sidewall stitching", "Lack of raw material"],
"Step 8": ["No person available to load Carcass", "No person available to collect tire"]
}
def get_step_info(step_number):
"""Returns detailed information about a manufacturing step."""
step_details = {
1: {
"Name": "Bead Insertion",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine starts bead insertion process.",
"1-3 seconds": "Beads are aligned and positioned.",
"3-4 seconds": "Final adjustment and confirmation of bead placement."
},
"Potential_Delay_Reasons": [
"Delay in bead insertion",
"Lack of raw material",
"Machine malfunction during bead alignment"
]
},
2: {
"Name": "Inner Liner Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-1 second": "Machine applies the first layer of the liner.",
"1-3 seconds": "Technician checks alignment and adjusts if needed.",
"3-4 seconds": "Final inspection and confirmation."
},
"Potential_Delay_Reasons": [
"Technician adjusting inner liner alignment",
"Person rebuilding defective tire sections",
"Machine alignment issues"
]
},
3: {
"Name": "Ply1 Apply",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "First ply is loaded onto the machine.",
"2-4 seconds": "Technician inspects and adjusts ply placement."
},
"Potential_Delay_Reasons": [
"Manual adjustment of ply placement",
"Technician repairing defective ply sections",
"Ply loading issues"
]
},
4: {
"Name": "Bead Set",
"Standard Time": "8 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Bead is positioned and pre-set.",
"3-6 seconds": "Machine secures the bead in place.",
"6-8 seconds": "Technician confirms the bead alignment."
},
"Potential_Delay_Reasons": [
"Delay in bead positioning",
"Lack of raw material",
"Machine securing process failure"
]
},
5: {
"Name": "Turnup",
"Standard Time": "4 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Turnup process begins with machine handling.",
"2-4 seconds": "Technician inspects the turnup and makes adjustments if necessary."
},
"Potential_Delay_Reasons": [
"Delay in turnup handling",
"Lack of raw material",
"Technician adjustment delays"
]
},
6: {
"Name": "Sidewall Apply",
"Standard Time": "14 seconds",
"Video_substeps_expected": {
"0-5 seconds": "Sidewall material is positioned by the machine.",
"5-10 seconds": "Technician checks for alignment and begins application.",
"10-14 seconds": "Final adjustments and confirmation of sidewall placement."
},
"Potential_Delay_Reasons": [
"Person repairing sidewall",
"Person rebuilding defective tire sections",
"Sidewall positioning issues"
]
},
7: {
"Name": "Sidewall Stitching",
"Standard Time": "5 seconds",
"Video_substeps_expected": {
"0-2 seconds": "Stitching process begins automatically.",
"2-4 seconds": "Technician inspects stitching for any irregularities.",
"4-5 seconds": "Machine completes stitching process."
},
"Potential_Delay_Reasons": [
"Delay in stitching process",
"Technician repairing stitching irregularities",
"Machine stitching malfunction"
]
},
8: {
"Name": "Carcass Unload",
"Standard Time": "7 seconds",
"Video_substeps_expected": {
"0-3 seconds": "Technician unloads(removes) carcass(tire) from the machine."
},
"Potential_Delay_reasons": [
"Person not available in time(in 3 sec) to remove carcass.",
"Person is doing bead(ring) insertion before carcass unload causing unload to be delayed by more than 3 sec"
]
}
}
return step_details.get(step_number, {"Error": "Invalid step number. Please provide a valid step number."})
def load_video(video_data, strategy='chat'):
"""Loads and processes video data into a format suitable for model input."""
bridge.set_bridge('torch')
num_frames = 24
if isinstance(video_data, str):
decord_vr = VideoReader(video_data, ctx=cpu(0))
else:
decord_vr = VideoReader(io.BytesIO(video_data), ctx=cpu(0))
frame_id_list = []
total_frames = len(decord_vr)
timestamps = [i[0] for i in decord_vr.get_frame_timestamp(np.arange(total_frames))]
max_second = round(max(timestamps)) + 1
for second in range(max_second):
closest_num = min(timestamps, key=lambda x: abs(x - second))
index = timestamps.index(closest_num)
frame_id_list.append(index)
if len(frame_id_list) >= num_frames:
break
video_data = decord_vr.get_batch(frame_id_list)
video_data = video_data.permute(3, 0, 1, 2)
return video_data
def load_model():
"""Loads the pre-trained model and tokenizer with quantization configurations."""
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=TORCH_TYPE,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
torch_dtype=TORCH_TYPE,
trust_remote_code=True,
quantization_config=quantization_config,
device_map="auto"
).eval()
return model, tokenizer
def predict(prompt, video_data, temperature, model, tokenizer):
"""Generates predictions based on the video and textual prompt."""
video = load_video(video_data, strategy='chat')
inputs = model.build_conversation_input_ids(
tokenizer=tokenizer,
query=prompt,
images=[video],
history=[],
template_version='chat'
)
inputs = {
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
'images': [[inputs['images'][0].to(DEVICE).to(TORCH_TYPE)]],
}
gen_kwargs = {
"max_new_tokens": 2048,
"pad_token_id": 128002,
"top_k": 1,
"do_sample": False,
"top_p": 0.1,
"temperature": temperature,
}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def get_analysis_prompt(step_number):
"""Constructs the prompt for analyzing delay reasons based on the selected step."""
step_info = get_step_info(step_number)
if "Error" in step_info:
return step_info["Error"]
step_name = step_info["Name"]
standard_time = step_info["Standard Time"]
video_substeps = step_info["Video_substeps_expected"]
potential_delay_reasons = step_info["Potential_Delay_Reasons"]
# Format substeps for the prompt
substeps_text = "\n".join([f" {time}: {description}" for time, description in video_substeps.items()])
# Format potential delay reasons
potential_reasons_text = "\n - ".join(potential_delay_reasons)
return f"""
You are an AI expert system specialized in analyzing manufacturing processes and identifying production delays in tire manufacturing. Your task is to accurately determine the specific delay reason based on video analysis.
### Step Information:
- **Step Number**: {step_number}
- **Step Name**: {step_name}
- **Standard Time**: {standard_time}
### Expected Video Substeps:
{substeps_text}
### Potential Delay Reasons:
- {potential_reasons_text}
### Task:
Carefully analyze the video footage for visual cues indicating production interruptions. Follow these guidelines:
1. If no person is visible in the frames, the delay might be due to their absence.
2. If a person is visible modifying or adjusting materials, consider related delay reasons.
3. Base your decision on observable evidence and match it to the listed potential delay reasons.
### Required Output Format:
Please respond with the most likely delay reason based on the analysis in the following format:
**Output**:
- **Selected Delay Reason**: [State the most probable delay reason]
- **Visual Evidence**: [Describe specific observations from the video that support your decision]
- **Reasoning**: [Explain why this delay reason best matches the observed evidence]
- **Alternative Analysis**: [Briefly explain why other reasons are less likely]
"""
model, tokenizer = load_model()
def inference(video, step_number):
"""Analyzes video to predict possible issues based on the manufacturing step."""
try:
if not video:
return "Please upload a video first."
prompt = get_analysis_prompt(step_number)
temperature = 0.3
response = predict(prompt, video, temperature, model, tokenizer)
return response
except Exception as e:
return f"An error occurred during analysis: {str(e)}"
def create_interface():
"""Creates the Gradio interface for the Manufacturing Analysis System."""
with gr.Blocks() as demo:
gr.Markdown("""
# Manufacturing Analysis System
Upload a video of the manufacturing step and select the step number.
The system will analyze the video and provide observations.
""")
with gr.Row():
with gr.Column():
video = gr.Video(label="Upload Manufacturing Video", sources=["upload"])
step_number = gr.Dropdown(
choices=[f"Step {i}" for i in range(1, 9)],
label="Manufacturing Step"
)
analyze_btn = gr.Button("Analyze", variant="primary")
with gr.Column():
output = gr.Textbox(label="Analysis Result", lines=10)
gr.Examples(
examples=[
["7838_step2_2_eval.mp4", "Step 2"],
["7838_step6_2_eval.mp4", "Step 6"],
["7838_step8_1_eval.mp4", "Step 8"],
["7993_step6_3_eval.mp4", "Step 6"],
["7993_step8_3_eval.mp4", "Step 8"]
],
inputs=[video, step_number],
cache_examples=False
)
analyze_btn.click(
fn=inference,
inputs=[video, step_number],
outputs=[output]
)
return demo
if __name__ == "__main__":
demo = create_interface()
demo.queue().launch(share=True)