import streamlit as st from huggingface_hub import snapshot_download from pdf2image import convert_from_bytes from PIL import Image import torch import os st.set_page_config(page_title="PDF Extract Kit QA", layout="centered") @st.cache_resource def load_model(): model_dir = snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir="./pdf_model", max_workers=4) # TODO: Load model from model_dir using correct logic, e.g.: # model = torch.load(os.path.join(model_dir, "model.pt")) # return model return model_dir # TEMP placeholder model_or_dir = load_model() def extract_answer(image, question): # TODO: Implement the actual inference using the model # For now, we return a placeholder return "Answering is not implemented yet. Replace this with model inference." st.title("📄 PDF Extract Kit: Question Answering") uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"]) question = st.text_input("Ask a question about the document") if uploaded_file and question: st.write("Reading and converting PDF...") images = convert_from_bytes(uploaded_file.read(), dpi=200) page_number = st.number_input("Select page", min_value=1, max_value=len(images), value=1, step=1) page_image = images[page_number - 1] st.image(page_image, caption=f"Page {page_number}") with st.spinner("Finding answer..."): answer = extract_answer(page_image, question) st.success("Answer:") st.write(answer)