import streamlit as st import fitz # PyMuPDF from huggingface_hub import snapshot_download import os from pdf2image import convert_from_path from PIL import Image import tempfile # Download the model if not already downloaded model_dir = "./pdf-extract-kit" if not os.path.exists(model_dir): snapshot_download(repo_id="opendatalab/pdf-extract-kit-1.0", local_dir=model_dir, max_workers=20) st.title("PDF Table Extractor with PDF-Extract-Kit-1.0") uploaded_file = st.file_uploader("Upload a PDF", type=["pdf"]) if uploaded_file: st.write("Converting PDF to images...") with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_pdf: tmp_pdf.write(uploaded_file.read()) tmp_pdf_path = tmp_pdf.name images = convert_from_path(tmp_pdf_path) for i, img in enumerate(images): st.image(img, caption=f"Page {i+1}", use_column_width=True) # Here you would call the table detection model on each image st.info("🛠 Table detection model would run here... (to be implemented)") st.success("Done processing PDF!")