Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,25 +1,60 @@
|
|
1 |
-
import
|
2 |
import torch
|
3 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
def predict_moderation(text):
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
iface = gr.Interface(fn=predict_moderation,
|
19 |
-
inputs="text",
|
20 |
-
outputs=[gr.Label(label="Category Scores"), gr.Label(label="Detected")],
|
21 |
-
title="Moderation Model",
|
22 |
-
description="Enter text to check for moderation flags.")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
iface.launch()
|
|
|
1 |
+
import json
|
2 |
import torch
|
3 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
4 |
+
import gradio as gr
|
5 |
+
|
6 |
+
model_name = "ifmain/ModerationBERT-En-02"
|
7 |
+
|
8 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
9 |
+
model = BertForSequenceClassification.from_pretrained(model_name, num_labels=18)
|
10 |
|
11 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
+
model.to(device)
|
13 |
|
14 |
+
categories = [
|
15 |
+
'harassment', 'harassment_threatening', 'hate', 'hate_threatening',
|
16 |
+
'self_harm', 'self_harm_instructions', 'self_harm_intent', 'sexual',
|
17 |
+
'sexual_minors', 'violence', 'violence_graphic', 'self-harm',
|
18 |
+
'sexual/minors', 'hate/threatening', 'violence/graphic',
|
19 |
+
'self-harm/intent', 'self-harm/instructions', 'harassment/threatening'
|
20 |
+
]
|
21 |
|
22 |
def predict_moderation(text):
|
23 |
+
encoding = tokenizer.encode_plus(
|
24 |
+
text,
|
25 |
+
add_special_tokens=True,
|
26 |
+
max_length=128,
|
27 |
+
return_token_type_ids=False,
|
28 |
+
padding='max_length',
|
29 |
+
truncation=True,
|
30 |
+
return_attention_mask=True,
|
31 |
+
return_tensors='pt'
|
32 |
+
)
|
33 |
+
|
34 |
+
input_ids = encoding['input_ids'].to(device)
|
35 |
+
attention_mask = encoding['attention_mask'].to(device)
|
36 |
|
37 |
+
model.eval()
|
38 |
+
with torch.no_grad():
|
39 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
40 |
+
|
41 |
+
probs = torch.sigmoid(outputs.logits)[0].cpu().numpy()
|
42 |
+
category_scores = {categories[i]: float(probs[i]) for i in range(len(categories))}
|
43 |
+
|
44 |
+
detected = any(prob > 0.5 for prob in probs)
|
45 |
+
|
46 |
+
return category_scores, str(detected)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
iface = gr.Interface(
|
50 |
+
fn=predict_moderation,
|
51 |
+
inputs=gr.Textbox(label="Enter text"),
|
52 |
+
outputs=[
|
53 |
+
gr.Label(label="Ratings by category"),
|
54 |
+
gr.Label(label="Was a violation detected?")
|
55 |
+
],
|
56 |
+
title="Text moderation",
|
57 |
+
description="Enter text to check it for content violations (ModerationBERT-En-02 model)."
|
58 |
+
)
|
59 |
|
60 |
+
iface.launch()
|