from typing import * import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from ...modules import sparse as sp from .base import SparseTransformerBase from ...representations import Strivec class SLatRadianceFieldDecoder(SparseTransformerBase): def __init__( self, resolution: int, model_channels: int, latent_channels: int, num_blocks: int, num_heads: Optional[int] = None, num_head_channels: Optional[int] = 64, mlp_ratio: float = 4, attn_mode: Literal[ "full", "shift_window", "shift_sequence", "shift_order", "swin" ] = "swin", window_size: int = 8, pe_mode: Literal["ape", "rope"] = "ape", use_fp16: bool = False, use_checkpoint: bool = False, qk_rms_norm: bool = False, representation_config: dict = None, ): super().__init__( in_channels=latent_channels, model_channels=model_channels, num_blocks=num_blocks, num_heads=num_heads, num_head_channels=num_head_channels, mlp_ratio=mlp_ratio, attn_mode=attn_mode, window_size=window_size, pe_mode=pe_mode, use_fp16=use_fp16, use_checkpoint=use_checkpoint, qk_rms_norm=qk_rms_norm, ) self.resolution = resolution self.rep_config = representation_config self._calc_layout() self.out_layer = sp.SparseLinear(model_channels, self.out_channels) self.initialize_weights() if use_fp16: self.convert_to_fp16() def initialize_weights(self) -> None: super().initialize_weights() # Zero-out output layers: nn.init.constant_(self.out_layer.weight, 0) nn.init.constant_(self.out_layer.bias, 0) def _calc_layout(self) -> None: self.layout = { "trivec": { "shape": (self.rep_config["rank"], 3, self.rep_config["dim"]), "size": self.rep_config["rank"] * 3 * self.rep_config["dim"], }, "density": { "shape": (self.rep_config["rank"],), "size": self.rep_config["rank"], }, "features_dc": { "shape": (self.rep_config["rank"], 1, 3), "size": self.rep_config["rank"] * 3, }, } start = 0 for k, v in self.layout.items(): v["range"] = (start, start + v["size"]) start += v["size"] self.out_channels = start def to_representation(self, x: sp.SparseTensor) -> List[Strivec]: """ Convert a batch of network outputs to 3D representations. Args: x: The [N x * x C] sparse tensor output by the network. Returns: list of representations """ ret = [] for i in range(x.shape[0]): representation = Strivec( sh_degree=0, resolution=self.resolution, aabb=[-0.5, -0.5, -0.5, 1, 1, 1], rank=self.rep_config["rank"], dim=self.rep_config["dim"], device="cuda", ) representation.density_shift = 0.0 representation.position = ( x.coords[x.layout[i]][:, 1:].float() + 0.5 ) / self.resolution representation.depth = torch.full( (representation.position.shape[0], 1), int(np.log2(self.resolution)), dtype=torch.uint8, device="cuda", ) for k, v in self.layout.items(): setattr( representation, k, x.feats[x.layout[i]][:, v["range"][0] : v["range"][1]].reshape( -1, *v["shape"] ), ) representation.trivec = representation.trivec + 1 ret.append(representation) return ret def forward(self, x: sp.SparseTensor) -> List[Strivec]: h = super().forward(x) h = h.type(x.dtype) h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:])) h = self.out_layer(h) return self.to_representation(h)