|
from typing import * |
|
import torch |
|
import math |
|
from .. import SparseTensor |
|
from .. import DEBUG, ATTN |
|
|
|
if ATTN == "xformers": |
|
import xformers.ops as xops |
|
elif ATTN == "flash_attn": |
|
import flash_attn |
|
else: |
|
raise ValueError(f"Unknown attention module: {ATTN}") |
|
|
|
|
|
__all__ = [ |
|
"sparse_windowed_scaled_dot_product_self_attention", |
|
] |
|
|
|
|
|
def calc_window_partition( |
|
tensor: SparseTensor, |
|
window_size: Union[int, Tuple[int, ...]], |
|
shift_window: Union[int, Tuple[int, ...]] = 0, |
|
) -> Tuple[torch.Tensor, torch.Tensor, List[int], List[int]]: |
|
""" |
|
Calculate serialization and partitioning for a set of coordinates. |
|
|
|
Args: |
|
tensor (SparseTensor): The input tensor. |
|
window_size (int): The window size to use. |
|
shift_window (Tuple[int, ...]): The shift of serialized coordinates. |
|
|
|
Returns: |
|
(torch.Tensor): Forwards indices. |
|
(torch.Tensor): Backwards indices. |
|
(List[int]): Sequence lengths. |
|
(List[int]): Sequence batch indices. |
|
""" |
|
DIM = tensor.coords.shape[1] - 1 |
|
shift_window = ( |
|
(shift_window,) * DIM if isinstance(shift_window, int) else shift_window |
|
) |
|
window_size = (window_size,) * DIM if isinstance(window_size, int) else window_size |
|
shifted_coords = tensor.coords.clone().detach() |
|
shifted_coords[:, 1:] += torch.tensor( |
|
shift_window, device=tensor.device, dtype=torch.int32 |
|
).unsqueeze(0) |
|
|
|
MAX_COORDS = shifted_coords[:, 1:].max(dim=0).values.tolist() |
|
NUM_WINDOWS = [math.ceil((mc + 1) / ws) for mc, ws in zip(MAX_COORDS, window_size)] |
|
OFFSET = torch.cumprod(torch.tensor([1] + NUM_WINDOWS[::-1]), dim=0).tolist()[::-1] |
|
|
|
shifted_coords[:, 1:] //= torch.tensor( |
|
window_size, device=tensor.device, dtype=torch.int32 |
|
).unsqueeze(0) |
|
shifted_indices = ( |
|
shifted_coords |
|
* torch.tensor(OFFSET, device=tensor.device, dtype=torch.int32).unsqueeze(0) |
|
).sum(dim=1) |
|
fwd_indices = torch.argsort(shifted_indices) |
|
bwd_indices = torch.empty_like(fwd_indices) |
|
bwd_indices[fwd_indices] = torch.arange(fwd_indices.shape[0], device=tensor.device) |
|
seq_lens = torch.bincount(shifted_indices) |
|
seq_batch_indices = ( |
|
torch.arange(seq_lens.shape[0], device=tensor.device, dtype=torch.int32) |
|
// OFFSET[0] |
|
) |
|
mask = seq_lens != 0 |
|
seq_lens = seq_lens[mask].tolist() |
|
seq_batch_indices = seq_batch_indices[mask].tolist() |
|
|
|
return fwd_indices, bwd_indices, seq_lens, seq_batch_indices |
|
|
|
|
|
def sparse_windowed_scaled_dot_product_self_attention( |
|
qkv: SparseTensor, window_size: int, shift_window: Tuple[int, int, int] = (0, 0, 0) |
|
) -> SparseTensor: |
|
""" |
|
Apply windowed scaled dot product self attention to a sparse tensor. |
|
|
|
Args: |
|
qkv (SparseTensor): [N, *, 3, H, C] sparse tensor containing Qs, Ks, and Vs. |
|
window_size (int): The window size to use. |
|
shift_window (Tuple[int, int, int]): The shift of serialized coordinates. |
|
shift (int): The shift to use. |
|
""" |
|
assert ( |
|
len(qkv.shape) == 4 and qkv.shape[1] == 3 |
|
), f"Invalid shape for qkv, got {qkv.shape}, expected [N, *, 3, H, C]" |
|
|
|
serialization_spatial_cache_name = f"window_partition_{window_size}_{shift_window}" |
|
serialization_spatial_cache = qkv.get_spatial_cache( |
|
serialization_spatial_cache_name |
|
) |
|
if serialization_spatial_cache is None: |
|
fwd_indices, bwd_indices, seq_lens, seq_batch_indices = calc_window_partition( |
|
qkv, window_size, shift_window |
|
) |
|
qkv.register_spatial_cache( |
|
serialization_spatial_cache_name, |
|
(fwd_indices, bwd_indices, seq_lens, seq_batch_indices), |
|
) |
|
else: |
|
( |
|
fwd_indices, |
|
bwd_indices, |
|
seq_lens, |
|
seq_batch_indices, |
|
) = serialization_spatial_cache |
|
|
|
M = fwd_indices.shape[0] |
|
T = qkv.feats.shape[0] |
|
H = qkv.feats.shape[2] |
|
C = qkv.feats.shape[3] |
|
|
|
qkv_feats = qkv.feats[fwd_indices] |
|
|
|
if DEBUG: |
|
start = 0 |
|
qkv_coords = qkv.coords[fwd_indices] |
|
for i in range(len(seq_lens)): |
|
seq_coords = qkv_coords[start : start + seq_lens[i]] |
|
assert ( |
|
seq_coords[:, 0] == seq_batch_indices[i] |
|
).all(), ( |
|
f"SparseWindowedScaledDotProductSelfAttention: batch index mismatch" |
|
) |
|
assert ( |
|
seq_coords[:, 1:].max(dim=0).values |
|
- seq_coords[:, 1:].min(dim=0).values |
|
< window_size |
|
).all(), ( |
|
f"SparseWindowedScaledDotProductSelfAttention: window size exceeded" |
|
) |
|
start += seq_lens[i] |
|
|
|
if all([seq_len == window_size for seq_len in seq_lens]): |
|
B = len(seq_lens) |
|
N = window_size |
|
qkv_feats = qkv_feats.reshape(B, N, 3, H, C) |
|
if ATTN == "xformers": |
|
q, k, v = qkv_feats.unbind(dim=2) |
|
out = xops.memory_efficient_attention(q, k, v) |
|
elif ATTN == "flash_attn": |
|
out = flash_attn.flash_attn_qkvpacked_func(qkv_feats) |
|
else: |
|
raise ValueError(f"Unknown attention module: {ATTN}") |
|
out = out.reshape(B * N, H, C) |
|
else: |
|
if ATTN == "xformers": |
|
q, k, v = qkv_feats.unbind(dim=1) |
|
q = q.unsqueeze(0) |
|
k = k.unsqueeze(0) |
|
v = v.unsqueeze(0) |
|
mask = xops.fmha.BlockDiagonalMask.from_seqlens(seq_lens) |
|
out = xops.memory_efficient_attention(q, k, v, mask)[0] |
|
elif ATTN == "flash_attn": |
|
cu_seqlens = ( |
|
torch.cat( |
|
[torch.tensor([0]), torch.cumsum(torch.tensor(seq_lens), dim=0)], |
|
dim=0, |
|
) |
|
.to(qkv.device) |
|
.int() |
|
) |
|
out = flash_attn.flash_attn_varlen_qkvpacked_func( |
|
qkv_feats, cu_seqlens, max(seq_lens) |
|
) |
|
|
|
out = out[bwd_indices] |
|
|
|
if DEBUG: |
|
qkv_coords = qkv_coords[bwd_indices] |
|
assert torch.equal( |
|
qkv_coords, qkv.coords |
|
), "SparseWindowedScaledDotProductSelfAttention: coordinate mismatch" |
|
|
|
return qkv.replace(out) |
|
|