File size: 5,781 Bytes
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
 
db6a3b7
a6bbecf
db6a3b7
a6bbecf
db6a3b7
 
 
a6bbecf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db6a3b7
 
 
a6bbecf
 
db6a3b7
a6bbecf
db6a3b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a6bbecf
 
 
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
db6a3b7
a6bbecf
 
 
 
 
 
db6a3b7
 
 
a6bbecf
 
 
 
 
 
db6a3b7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from typing import *
import torch
import torch.nn as nn
import torch.nn.functional as F
from ...modules import sparse as sp
from ...utils.random_utils import hammersley_sequence
from .base import SparseTransformerBase
from ...representations import Gaussian


class SLatGaussianDecoder(SparseTransformerBase):
    def __init__(
        self,
        resolution: int,
        model_channels: int,
        latent_channels: int,
        num_blocks: int,
        num_heads: Optional[int] = None,
        num_head_channels: Optional[int] = 64,
        mlp_ratio: float = 4,
        attn_mode: Literal[
            "full", "shift_window", "shift_sequence", "shift_order", "swin"
        ] = "swin",
        window_size: int = 8,
        pe_mode: Literal["ape", "rope"] = "ape",
        use_fp16: bool = False,
        use_checkpoint: bool = False,
        qk_rms_norm: bool = False,
        representation_config: dict = None,
    ):
        super().__init__(
            in_channels=latent_channels,
            model_channels=model_channels,
            num_blocks=num_blocks,
            num_heads=num_heads,
            num_head_channels=num_head_channels,
            mlp_ratio=mlp_ratio,
            attn_mode=attn_mode,
            window_size=window_size,
            pe_mode=pe_mode,
            use_fp16=use_fp16,
            use_checkpoint=use_checkpoint,
            qk_rms_norm=qk_rms_norm,
        )
        self.resolution = resolution
        self.rep_config = representation_config
        self._calc_layout()
        self.out_layer = sp.SparseLinear(model_channels, self.out_channels)
        self._build_perturbation()

        self.initialize_weights()
        if use_fp16:
            self.convert_to_fp16()

    def initialize_weights(self) -> None:
        super().initialize_weights()
        # Zero-out output layers:
        nn.init.constant_(self.out_layer.weight, 0)
        nn.init.constant_(self.out_layer.bias, 0)

    def _build_perturbation(self) -> None:
        perturbation = [
            hammersley_sequence(3, i, self.rep_config["num_gaussians"])
            for i in range(self.rep_config["num_gaussians"])
        ]
        perturbation = torch.tensor(perturbation).float() * 2 - 1
        perturbation = perturbation / self.rep_config["voxel_size"]
        perturbation = torch.atanh(perturbation).to(self.device)
        self.register_buffer("offset_perturbation", perturbation)

    def _calc_layout(self) -> None:
        self.layout = {
            "_xyz": {
                "shape": (self.rep_config["num_gaussians"], 3),
                "size": self.rep_config["num_gaussians"] * 3,
            },
            "_features_dc": {
                "shape": (self.rep_config["num_gaussians"], 1, 3),
                "size": self.rep_config["num_gaussians"] * 3,
            },
            "_scaling": {
                "shape": (self.rep_config["num_gaussians"], 3),
                "size": self.rep_config["num_gaussians"] * 3,
            },
            "_rotation": {
                "shape": (self.rep_config["num_gaussians"], 4),
                "size": self.rep_config["num_gaussians"] * 4,
            },
            "_opacity": {
                "shape": (self.rep_config["num_gaussians"], 1),
                "size": self.rep_config["num_gaussians"],
            },
        }
        start = 0
        for k, v in self.layout.items():
            v["range"] = (start, start + v["size"])
            start += v["size"]
        self.out_channels = start

    def to_representation(self, x: sp.SparseTensor) -> List[Gaussian]:
        """
        Convert a batch of network outputs to 3D representations.

        Args:
            x: The [N x * x C] sparse tensor output by the network.

        Returns:
            list of representations
        """
        ret = []
        for i in range(x.shape[0]):
            representation = Gaussian(
                sh_degree=0,
                aabb=[-0.5, -0.5, -0.5, 1.0, 1.0, 1.0],
                mininum_kernel_size=self.rep_config["3d_filter_kernel_size"],
                scaling_bias=self.rep_config["scaling_bias"],
                opacity_bias=self.rep_config["opacity_bias"],
                scaling_activation=self.rep_config["scaling_activation"],
            )
            xyz = (x.coords[x.layout[i]][:, 1:].float() + 0.5) / self.resolution
            for k, v in self.layout.items():
                if k == "_xyz":
                    offset = x.feats[x.layout[i]][
                        :, v["range"][0] : v["range"][1]
                    ].reshape(-1, *v["shape"])
                    offset = offset * self.rep_config["lr"][k]
                    if self.rep_config["perturb_offset"]:
                        offset = offset + self.offset_perturbation
                    offset = (
                        torch.tanh(offset)
                        / self.resolution
                        * 0.5
                        * self.rep_config["voxel_size"]
                    )
                    _xyz = xyz.unsqueeze(1) + offset
                    setattr(representation, k, _xyz.flatten(0, 1))
                else:
                    feats = (
                        x.feats[x.layout[i]][:, v["range"][0] : v["range"][1]]
                        .reshape(-1, *v["shape"])
                        .flatten(0, 1)
                    )
                    feats = feats * self.rep_config["lr"][k]
                    setattr(representation, k, feats)
            ret.append(representation)
        return ret

    def forward(self, x: sp.SparseTensor) -> List[Gaussian]:
        h = super().forward(x)
        h = h.type(x.dtype)
        h = h.replace(F.layer_norm(h.feats, h.feats.shape[-1:]))
        h = self.out_layer(h)
        return self.to_representation(h)