|
import gradio as gr |
|
import tensorflow as tf |
|
from tensorflow.keras.preprocessing import image |
|
import numpy as np |
|
from PIL import Image |
|
from keras import layers |
|
|
|
|
|
model = tf.keras.models.load_model("xception-head") |
|
|
|
|
|
class_labels = ['fresh', 'early decay', 'advanced decay','skeletonized'] |
|
|
|
def classify_image(img): |
|
|
|
img = img.resize((299, 299)) |
|
img = np.array(img) / 255.0 |
|
img = np.expand_dims(img, axis=0) |
|
|
|
|
|
predictions = model.predict(img) |
|
predicted_class = np.argmax(predictions, axis=1)[0] |
|
confidence = np.max(predictions) |
|
return {class_labels[i]: float(predictions[0][i]) for i in range(len(class_labels))}, confidence |
|
|
|
|
|
example_images = [ |
|
'skeletonized.jpeg' |
|
] |
|
|
|
|
|
demo = gr.Interface( |
|
fn=classify_image, |
|
title="Human Decomposition Image Classification", |
|
description = "Predict the stage of decay (fresh, early decay, advanced decay, or skeletonized) of a head. This is a demo of one of our human decomposition image classification <a href=\"https://huggingface.co/icputrd/megyesi_decomposition_classification/blob/main/head/xception\">models</a>.", |
|
inputs=gr.Image(type="pil"), |
|
outputs=[gr.Label(num_top_classes=len(class_labels)), gr.Number()], |
|
examples=example_images, |
|
cache_examples=False, |
|
live=True, |
|
article = "Author: <a href=\"https://www.linkedin.com/in/anna-maria-nau/\">Anna-Maria Nau</a>" |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|