ichtestenurmal commited on
Commit
e28e2c8
·
1 Parent(s): decc742

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +17 -17
app.py CHANGED
@@ -2,34 +2,34 @@ import os
2
  import copy
3
  import time
4
 
5
- import cv2 as cv
6
  import numpy as np
7
  import onnxruntime
8
 
9
- from PIL import Image
10
 
11
  import gradio
12
 
13
  def run_inference(onnx_session, input_size, image):
14
- # リサイズ
15
- temp_image = copy.deepcopy(image)
16
- resize_image = cv.resize(temp_image, dsize=(input_size, input_size))
17
- x = cv.cvtColor(resize_image, cv.COLOR_BGR2RGB)
 
18
 
19
- # 前処理
20
- x = np.array(x, dtype=np.float32)
21
- mean = [0.485, 0.456, 0.406]
22
- std = [0.229, 0.224, 0.225]
23
  x = (x / 255 - mean) / std
24
  x = x.transpose(2, 0, 1).astype('float32')
25
  x = x.reshape(-1, 3, input_size, input_size)
26
 
27
- # 推論
28
  input_name = onnx_session.get_inputs()[0].name
29
  output_name = onnx_session.get_outputs()[0].name
30
  onnx_result = onnx_session.run([output_name], {input_name: x})
31
 
32
- # 後処理
33
  onnx_result = np.array(onnx_result).squeeze()
34
  min_value = np.min(onnx_result)
35
  max_value = np.max(onnx_result)
@@ -43,20 +43,20 @@ def run_inference(onnx_session, input_size, image):
43
  onnx_session = onnxruntime.InferenceSession("u2net.onnx")
44
 
45
  def create_rgba(mode, image):
 
46
  out = run_inference(
47
  onnx_session,
48
  320,
49
  image,
50
  )
51
- resize_image = cv.resize(out, dsize=(image.shape[1], image.shape[0]))
52
 
53
  if mode == "binary":
54
- resize_image[resize_image > 255] = 255
55
- resize_image[resize_image < 125] = 0
56
 
57
- mask = Image.fromarray(resize_image)
58
 
59
- rgba_image = Image.fromarray(image).convert('RGBA')
60
  rgba_image.putalpha(mask)
61
 
62
  return rgba_image
 
2
  import copy
3
  import time
4
 
 
5
  import numpy as np
6
  import onnxruntime
7
 
8
+ from PIL import Image, ImageOps
9
 
10
  import gradio
11
 
12
  def run_inference(onnx_session, input_size, image):
13
+ # Resize
14
+ temp_image = image.copy()
15
+ resize_image = temp_image.resize((input_size, input_size), Image.ANTIALIAS)
16
+ x = ImageOps.exif_transpose(resize_image)
17
+ x = np.array(x)
18
 
19
+ # Preprocessing
20
+ x = x.astype(np.float32)
21
+ mean = np.array([0.485, 0.456, 0.406], dtype=np.float32)
22
+ std = np.array([0.229, 0.224, 0.225], dtype=np.float32)
23
  x = (x / 255 - mean) / std
24
  x = x.transpose(2, 0, 1).astype('float32')
25
  x = x.reshape(-1, 3, input_size, input_size)
26
 
27
+ # Inference
28
  input_name = onnx_session.get_inputs()[0].name
29
  output_name = onnx_session.get_outputs()[0].name
30
  onnx_result = onnx_session.run([output_name], {input_name: x})
31
 
32
+ # Postprocessing
33
  onnx_result = np.array(onnx_result).squeeze()
34
  min_value = np.min(onnx_result)
35
  max_value = np.max(onnx_result)
 
43
  onnx_session = onnxruntime.InferenceSession("u2net.onnx")
44
 
45
  def create_rgba(mode, image):
46
+ image = Image.fromarray(image).convert('RGB')
47
  out = run_inference(
48
  onnx_session,
49
  320,
50
  image,
51
  )
52
+ resize_image = Image.fromarray(out).resize((image.size[0], image.size[1]), Image.ANTIALIAS)
53
 
54
  if mode == "binary":
55
+ resize_image = resize_image.point(lambda x: 255 if x > 125 else 0)
 
56
 
57
+ mask = resize_image
58
 
59
+ rgba_image = image.convert('RGBA')
60
  rgba_image.putalpha(mask)
61
 
62
  return rgba_image