Update
Browse files- edit_app.py +52 -26
edit_app.py
CHANGED
|
@@ -53,42 +53,28 @@ pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
|
|
| 53 |
example_image = Image.open("imgs/example.jpg").convert("RGB")
|
| 54 |
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
steps: int,
|
| 58 |
randomize_seed: bool,
|
| 59 |
seed: int,
|
| 60 |
randomize_cfg: bool,
|
| 61 |
text_cfg_scale: float,
|
| 62 |
image_cfg_scale: float,
|
| 63 |
-
):
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
steps,
|
| 69 |
-
randomize_seed,
|
| 70 |
-
seed,
|
| 71 |
-
randomize_cfg,
|
| 72 |
-
text_cfg_scale,
|
| 73 |
-
image_cfg_scale,
|
| 74 |
-
)
|
| 75 |
|
| 76 |
|
| 77 |
def generate(
|
| 78 |
input_image: Image.Image,
|
| 79 |
instruction: str,
|
| 80 |
steps: int,
|
| 81 |
-
randomize_seed: bool,
|
| 82 |
seed: int,
|
| 83 |
-
randomize_cfg: bool,
|
| 84 |
text_cfg_scale: float,
|
| 85 |
image_cfg_scale: float,
|
| 86 |
progress=gr.Progress(track_tqdm=True),
|
| 87 |
-
):
|
| 88 |
-
seed = random.randint(0, 100000) if randomize_seed else seed
|
| 89 |
-
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
| 90 |
-
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
| 91 |
-
|
| 92 |
width, height = input_image.size
|
| 93 |
factor = 512 / max(width, height)
|
| 94 |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
|
@@ -108,7 +94,37 @@ def generate(
|
|
| 108 |
num_inference_steps=steps,
|
| 109 |
generator=generator,
|
| 110 |
).images[0]
|
| 111 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
|
| 114 |
def reset():
|
|
@@ -116,7 +132,7 @@ def reset():
|
|
| 116 |
|
| 117 |
|
| 118 |
def process_example(input_image: Image.Image, instruction: str, seed: int) -> Image.Image:
|
| 119 |
-
return generate(input_image, instruction, 50,
|
| 120 |
|
| 121 |
|
| 122 |
with gr.Blocks() as demo:
|
|
@@ -214,18 +230,28 @@ InstructPix2Pix: Learning to Follow Image Editing Instructions
|
|
| 214 |
text_cfg_scale.submit,
|
| 215 |
image_cfg_scale.submit,
|
| 216 |
],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 217 |
fn=generate,
|
| 218 |
inputs=[
|
| 219 |
input_image,
|
| 220 |
instruction,
|
| 221 |
steps,
|
| 222 |
-
randomize_seed,
|
| 223 |
seed,
|
| 224 |
-
randomize_cfg,
|
| 225 |
text_cfg_scale,
|
| 226 |
image_cfg_scale,
|
| 227 |
],
|
| 228 |
-
outputs=
|
| 229 |
api_name="run",
|
| 230 |
)
|
| 231 |
|
|
|
|
| 53 |
example_image = Image.open("imgs/example.jpg").convert("RGB")
|
| 54 |
|
| 55 |
|
| 56 |
+
def randomize(
|
|
|
|
| 57 |
randomize_seed: bool,
|
| 58 |
seed: int,
|
| 59 |
randomize_cfg: bool,
|
| 60 |
text_cfg_scale: float,
|
| 61 |
image_cfg_scale: float,
|
| 62 |
+
) -> tuple[int, float, float]:
|
| 63 |
+
seed = random.randint(0, 100000) if randomize_seed else seed
|
| 64 |
+
text_cfg_scale = round(random.uniform(6.0, 9.0), ndigits=2) if randomize_cfg else text_cfg_scale
|
| 65 |
+
image_cfg_scale = round(random.uniform(1.2, 1.8), ndigits=2) if randomize_cfg else image_cfg_scale
|
| 66 |
+
return seed, text_cfg_scale, image_cfg_scale
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
|
| 68 |
|
| 69 |
def generate(
|
| 70 |
input_image: Image.Image,
|
| 71 |
instruction: str,
|
| 72 |
steps: int,
|
|
|
|
| 73 |
seed: int,
|
|
|
|
| 74 |
text_cfg_scale: float,
|
| 75 |
image_cfg_scale: float,
|
| 76 |
progress=gr.Progress(track_tqdm=True),
|
| 77 |
+
) -> Image.Image:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
width, height = input_image.size
|
| 79 |
factor = 512 / max(width, height)
|
| 80 |
factor = math.ceil(min(width, height) * factor / 64) * 64 / min(width, height)
|
|
|
|
| 94 |
num_inference_steps=steps,
|
| 95 |
generator=generator,
|
| 96 |
).images[0]
|
| 97 |
+
return edited_image
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def load_example(
|
| 101 |
+
steps: int,
|
| 102 |
+
randomize_seed: bool,
|
| 103 |
+
seed: int,
|
| 104 |
+
randomize_cfg: bool,
|
| 105 |
+
text_cfg_scale: float,
|
| 106 |
+
image_cfg_scale: float,
|
| 107 |
+
progress=gr.Progress(track_tqdm=True),
|
| 108 |
+
):
|
| 109 |
+
example_instruction = random.choice(example_instructions)
|
| 110 |
+
seed, text_cfg_scale, image_cfg_scale = randomize(
|
| 111 |
+
randomize_seed, seed, randomize_cfg, text_cfg_scale, image_cfg_scale
|
| 112 |
+
)
|
| 113 |
+
return [
|
| 114 |
+
example_image,
|
| 115 |
+
example_instruction,
|
| 116 |
+
seed,
|
| 117 |
+
text_cfg_scale,
|
| 118 |
+
image_cfg_scale,
|
| 119 |
+
generate(
|
| 120 |
+
example_image,
|
| 121 |
+
example_instruction,
|
| 122 |
+
steps,
|
| 123 |
+
seed,
|
| 124 |
+
text_cfg_scale,
|
| 125 |
+
image_cfg_scale,
|
| 126 |
+
),
|
| 127 |
+
]
|
| 128 |
|
| 129 |
|
| 130 |
def reset():
|
|
|
|
| 132 |
|
| 133 |
|
| 134 |
def process_example(input_image: Image.Image, instruction: str, seed: int) -> Image.Image:
|
| 135 |
+
return generate(input_image, instruction, 50, seed, 7.5, 1.5)
|
| 136 |
|
| 137 |
|
| 138 |
with gr.Blocks() as demo:
|
|
|
|
| 230 |
text_cfg_scale.submit,
|
| 231 |
image_cfg_scale.submit,
|
| 232 |
],
|
| 233 |
+
fn=randomize,
|
| 234 |
+
inputs=[
|
| 235 |
+
randomize_seed,
|
| 236 |
+
seed,
|
| 237 |
+
randomize_cfg,
|
| 238 |
+
text_cfg_scale,
|
| 239 |
+
image_cfg_scale,
|
| 240 |
+
],
|
| 241 |
+
outputs=[seed, text_cfg_scale, image_cfg_scale],
|
| 242 |
+
queue=False,
|
| 243 |
+
api_name=False,
|
| 244 |
+
).then(
|
| 245 |
fn=generate,
|
| 246 |
inputs=[
|
| 247 |
input_image,
|
| 248 |
instruction,
|
| 249 |
steps,
|
|
|
|
| 250 |
seed,
|
|
|
|
| 251 |
text_cfg_scale,
|
| 252 |
image_cfg_scale,
|
| 253 |
],
|
| 254 |
+
outputs=edited_image,
|
| 255 |
api_name="run",
|
| 256 |
)
|
| 257 |
|