|
import torch |
|
import torch.nn as nn |
|
from functools import partial |
|
|
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper |
|
|
|
|
|
class AbstractEncoder(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def encode(self, *args, **kwargs): |
|
raise NotImplementedError |
|
|
|
|
|
|
|
class ClassEmbedder(nn.Module): |
|
def __init__(self, embed_dim, n_classes=1000, key='class'): |
|
super().__init__() |
|
self.key = key |
|
self.embedding = nn.Embedding(n_classes, embed_dim) |
|
|
|
def forward(self, batch, key=None): |
|
if key is None: |
|
key = self.key |
|
|
|
c = batch[key][:, None] |
|
c = self.embedding(c) |
|
return c |
|
|
|
|
|
class TransformerEmbedder(AbstractEncoder): |
|
"""Some transformer encoder layers""" |
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"): |
|
super().__init__() |
|
self.device = device |
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, |
|
attn_layers=Encoder(dim=n_embed, depth=n_layer)) |
|
|
|
def forward(self, tokens): |
|
tokens = tokens.to(self.device) |
|
z = self.transformer(tokens, return_embeddings=True) |
|
return z |
|
|
|
def encode(self, x): |
|
return self(x) |
|
|
|
|
|
class BERTTokenizer(AbstractEncoder): |
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)""" |
|
def __init__(self, device="cuda", vq_interface=True, max_length=77): |
|
super().__init__() |
|
from transformers import BertTokenizerFast |
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") |
|
self.device = device |
|
self.vq_interface = vq_interface |
|
self.max_length = max_length |
|
|
|
def forward(self, text): |
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, |
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt") |
|
tokens = batch_encoding["input_ids"].to(self.device) |
|
return tokens |
|
|
|
@torch.no_grad() |
|
def encode(self, text): |
|
tokens = self(text) |
|
if not self.vq_interface: |
|
return tokens |
|
return None, None, [None, None, tokens] |
|
|
|
def decode(self, text): |
|
return text |
|
|
|
|
|
class BERTEmbedder(AbstractEncoder): |
|
"""Uses the BERT tokenizr model and add some transformer encoder layers""" |
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77, |
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0): |
|
super().__init__() |
|
self.use_tknz_fn = use_tokenizer |
|
if self.use_tknz_fn: |
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len) |
|
self.device = device |
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len, |
|
attn_layers=Encoder(dim=n_embed, depth=n_layer), |
|
emb_dropout=embedding_dropout) |
|
|
|
def forward(self, text): |
|
if self.use_tknz_fn: |
|
tokens = self.tknz_fn(text) |
|
else: |
|
tokens = text |
|
z = self.transformer(tokens, return_embeddings=True) |
|
return z |
|
|
|
def encode(self, text): |
|
|
|
return self(text) |
|
|
|
|
|
class SpatialRescaler(nn.Module): |
|
def __init__(self, |
|
n_stages=1, |
|
method='bilinear', |
|
multiplier=0.5, |
|
in_channels=3, |
|
out_channels=None, |
|
bias=False): |
|
super().__init__() |
|
self.n_stages = n_stages |
|
assert self.n_stages >= 0 |
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area'] |
|
self.multiplier = multiplier |
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method) |
|
self.remap_output = out_channels is not None |
|
if self.remap_output: |
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.') |
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias) |
|
|
|
def forward(self,x): |
|
for stage in range(self.n_stages): |
|
x = self.interpolator(x, scale_factor=self.multiplier) |
|
|
|
|
|
if self.remap_output: |
|
x = self.channel_mapper(x) |
|
return x |
|
|
|
def encode(self, x): |
|
return self(x) |
|
|