|
|
|
|
|
import random |
|
|
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
import torch |
|
from diffusers import DDPMScheduler, StableDiffusionXLAdapterPipeline, T2IAdapter |
|
|
|
DESCRIPTION = "# T2I-Adapter-SDXL Sketch" |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
if torch.cuda.is_available(): |
|
model_id = "stabilityai/stable-diffusion-xl-base-1.0" |
|
adapter = T2IAdapter.from_pretrained( |
|
"Adapter/t2iadapter", |
|
subfolder="sketch_sdxl_1.0", |
|
torch_dtype=torch.float16, |
|
adapter_type="full_adapter_xl", |
|
) |
|
scheduler = DDPMScheduler.from_pretrained(model_id, subfolder="scheduler") |
|
pipe = StableDiffusionXLAdapterPipeline.from_pretrained( |
|
model_id, |
|
adapter=adapter, |
|
safety_checker=None, |
|
torch_dtype=torch.float16, |
|
variant="fp16", |
|
scheduler=scheduler, |
|
) |
|
pipe.to(device) |
|
else: |
|
pipe = None |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
return seed |
|
|
|
|
|
def run( |
|
image: PIL.Image.Image, |
|
prompt: str, |
|
negative_prompt: str, |
|
num_steps=50, |
|
guidance_scale=7.5, |
|
seed=0, |
|
) -> PIL.Image.Image: |
|
|
|
image = image.convert("L") |
|
|
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
out = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
image=image, |
|
num_inference_steps=num_steps, |
|
generator=generator, |
|
guidance_scale=guidance_scale, |
|
).images[0] |
|
return out |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
image = gr.Image( |
|
source="canvas", |
|
tool="sketch", |
|
type="pil", |
|
image_mode="1", |
|
invert_colors=True, |
|
shape=(1024, 1024), |
|
brush_radius=20, |
|
height=600, |
|
) |
|
prompt = gr.Textbox(label="Prompt") |
|
run_button = gr.Button("Run") |
|
with gr.Accordion("Advanced options", open=False): |
|
negative_prompt = gr.Textbox( |
|
label="Negative prompt", value="extra digit, fewer digits, cropped, worst quality, low quality" |
|
) |
|
num_steps = gr.Slider( |
|
label="Number of steps", |
|
minimum=1, |
|
maximum=100, |
|
step=1, |
|
value=50, |
|
) |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.1, |
|
maximum=30.0, |
|
step=0.1, |
|
value=7.5, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
with gr.Column(): |
|
result = gr.Image(label="Result", height=600) |
|
|
|
inputs = [ |
|
image, |
|
prompt, |
|
negative_prompt, |
|
num_steps, |
|
guidance_scale, |
|
seed, |
|
] |
|
prompt.submit( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name=False, |
|
) |
|
run_button.click( |
|
fn=randomize_seed_fn, |
|
inputs=[seed, randomize_seed], |
|
outputs=seed, |
|
queue=False, |
|
api_name=False, |
|
).then( |
|
fn=run, |
|
inputs=inputs, |
|
outputs=result, |
|
api_name="run", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue(max_size=20).launch() |
|
|