Spaces:
Running
Running
import os | |
import sys | |
import json | |
import pandas as pd | |
import gradio as gr | |
# 1) Ajusta o path antes de importar o loader | |
BASE_DIR = os.path.dirname(os.path.abspath(__file__)) | |
INFERENCE_PATH = os.path.join(BASE_DIR, "smi-ted", "inference") | |
sys.path.insert(0, INFERENCE_PATH) | |
from smi_ted_light.load import load_smi_ted | |
# 2) Carrega o modelo SMI-TED Light | |
MODEL_DIR = os.path.join(INFERENCE_PATH, "smi_ted_light") | |
model = load_smi_ted( | |
folder=MODEL_DIR, | |
ckpt_filename="smi-ted-Light_40.pt", | |
vocab_filename="bert_vocab_curated.txt", | |
) | |
def process_inputs(smiles: str, file_obj): | |
# Modo batch | |
if file_obj is not None: | |
try: | |
# autodetecta delimitador (; ou , etc) | |
df_in = pd.read_csv(file_obj.name, sep=None, engine='python') | |
# procura coluna "smiles" (case‐insensitive) | |
smiles_cols = [c for c in df_in.columns if c.lower() == "smiles"] | |
if not smiles_cols: | |
return ( | |
"Error: The CSV must have a column named 'Smiles' with the respective SMILES.", | |
gr.update(visible=False), | |
) | |
smiles_col = smiles_cols[0] | |
smiles_list = df_in[smiles_col].astype(str).tolist() | |
# **novo**: limite de 1000 SMILES | |
if len(smiles_list) > 1000: | |
return ( | |
f"Error: Maximum 1000 SMILES allowed per batch (you provided {len(smiles_list)}).", | |
gr.update(visible=False), | |
) | |
out_records = [] | |
invalid_smiles = [] | |
embed_dim = None | |
# para cada SMILES, tenta gerar embedding | |
for sm in smiles_list: | |
try: | |
vec = model.encode(sm, return_torch=True)[0].tolist() | |
if embed_dim is None: | |
embed_dim = len(vec) | |
record = {"smiles": sm} | |
record.update({f"dim_{i}": v for i, v in enumerate(vec)}) | |
except Exception: | |
invalid_smiles.append(sm) | |
if embed_dim is not None: | |
record = {"smiles": f"SMILES {sm} was invalid"} | |
record.update({f"dim_{i}": None for i in range(embed_dim)}) | |
else: | |
record = {"smiles": f"SMILES {sm} was invalid"} | |
out_records.append(record) | |
out_df = pd.DataFrame(out_records) | |
out_df.to_csv("embeddings.csv", index=False) | |
total = len(smiles_list) | |
valid = total - len(invalid_smiles) | |
invalid_count = len(invalid_smiles) | |
if invalid_smiles: | |
msg = ( | |
f"{valid} SMILES processed successfully. " | |
f"{invalid_count} entr{'y' if invalid_count==1 else 'ies'} could not be parsed by RDKit:\n" | |
+ "\n".join(f"- {s}" for s in invalid_smiles) | |
) | |
else: | |
msg = f"Processed batch of {valid} SMILES. Download embeddings.csv." | |
return msg, gr.update(value="embeddings.csv", visible=True) | |
except Exception as e: | |
return f"Error processing batch: {e}", gr.update(visible=False) | |
# Modo single (sem mudança) | |
smiles = smiles.strip() | |
if not smiles: | |
return "Please enter a SMILES or upload a CSV file.", gr.update(visible=False) | |
try: | |
vec = model.encode(smiles, return_torch=True)[0].tolist() | |
cols = ["smiles"] + [f"dim_{i}" for i in range(len(vec))] | |
df_out = pd.DataFrame([[smiles] + vec], columns=cols) | |
df_out.to_csv("embeddings.csv", index=False) | |
return json.dumps(vec), gr.update(value="embeddings.csv", visible=True) | |
except Exception: | |
return f"The following input '{smiles}' is not a valid SMILES", gr.update(visible=False) | |
# 4) Interface Gradio (sem mudanças) | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
# SMI-TED-Embeddings-Extraction | |
**Single mode:** paste a SMILES string in the left box. | |
**Batch mode:** upload a CSV file where each row has a SMILES in the first column. | |
- **Maximum 1000 SMILES per batch.** Processing time increases with batch size due to Hugging Face environment limits. | |
_This is just a demo environment; for heavy-duty usage, please visit:_ | |
https://github.com/IBM/materials/tree/main/models/smi_ted | |
to download the model and run your own experiments. | |
- In both cases, an `embeddings.csv` file will be extracted for download, with the first column as SMILES and the embedding values in the following columns. | |
""" | |
) | |
with gr.Row(): | |
smiles_in = gr.Textbox(label="SMILES (single mode)", placeholder="e.g. CCO") | |
file_in = gr.File(label="SMILES CSV (batch mode)", file_types=[".csv"]) | |
generate_btn = gr.Button("Extract Embeddings") | |
with gr.Row(): | |
output_msg = gr.Textbox(label="Message / Embedding (JSON)", interactive=False, lines=4) | |
download_csv = gr.File(label="Download embeddings.csv", visible=False) | |
generate_btn.click( | |
fn=process_inputs, | |
inputs=[smiles_in, file_in], | |
outputs=[output_msg, download_csv] | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0") | |