SMI-TED-demo1 / app.py
Enzo Reis de Oliveira
Adding limit and message
862c2e6
import os
import sys
import json
import pandas as pd
import gradio as gr
# 1) Ajusta o path antes de importar o loader
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
INFERENCE_PATH = os.path.join(BASE_DIR, "smi-ted", "inference")
sys.path.insert(0, INFERENCE_PATH)
from smi_ted_light.load import load_smi_ted
# 2) Carrega o modelo SMI-TED Light
MODEL_DIR = os.path.join(INFERENCE_PATH, "smi_ted_light")
model = load_smi_ted(
folder=MODEL_DIR,
ckpt_filename="smi-ted-Light_40.pt",
vocab_filename="bert_vocab_curated.txt",
)
def process_inputs(smiles: str, file_obj):
# Modo batch
if file_obj is not None:
try:
# autodetecta delimitador (; ou , etc)
df_in = pd.read_csv(file_obj.name, sep=None, engine='python')
# procura coluna "smiles" (case‐insensitive)
smiles_cols = [c for c in df_in.columns if c.lower() == "smiles"]
if not smiles_cols:
return (
"Error: The CSV must have a column named 'Smiles' with the respective SMILES.",
gr.update(visible=False),
)
smiles_col = smiles_cols[0]
smiles_list = df_in[smiles_col].astype(str).tolist()
# **novo**: limite de 1000 SMILES
if len(smiles_list) > 1000:
return (
f"Error: Maximum 1000 SMILES allowed per batch (you provided {len(smiles_list)}).",
gr.update(visible=False),
)
out_records = []
invalid_smiles = []
embed_dim = None
# para cada SMILES, tenta gerar embedding
for sm in smiles_list:
try:
vec = model.encode(sm, return_torch=True)[0].tolist()
if embed_dim is None:
embed_dim = len(vec)
record = {"smiles": sm}
record.update({f"dim_{i}": v for i, v in enumerate(vec)})
except Exception:
invalid_smiles.append(sm)
if embed_dim is not None:
record = {"smiles": f"SMILES {sm} was invalid"}
record.update({f"dim_{i}": None for i in range(embed_dim)})
else:
record = {"smiles": f"SMILES {sm} was invalid"}
out_records.append(record)
out_df = pd.DataFrame(out_records)
out_df.to_csv("embeddings.csv", index=False)
total = len(smiles_list)
valid = total - len(invalid_smiles)
invalid_count = len(invalid_smiles)
if invalid_smiles:
msg = (
f"{valid} SMILES processed successfully. "
f"{invalid_count} entr{'y' if invalid_count==1 else 'ies'} could not be parsed by RDKit:\n"
+ "\n".join(f"- {s}" for s in invalid_smiles)
)
else:
msg = f"Processed batch of {valid} SMILES. Download embeddings.csv."
return msg, gr.update(value="embeddings.csv", visible=True)
except Exception as e:
return f"Error processing batch: {e}", gr.update(visible=False)
# Modo single (sem mudança)
smiles = smiles.strip()
if not smiles:
return "Please enter a SMILES or upload a CSV file.", gr.update(visible=False)
try:
vec = model.encode(smiles, return_torch=True)[0].tolist()
cols = ["smiles"] + [f"dim_{i}" for i in range(len(vec))]
df_out = pd.DataFrame([[smiles] + vec], columns=cols)
df_out.to_csv("embeddings.csv", index=False)
return json.dumps(vec), gr.update(value="embeddings.csv", visible=True)
except Exception:
return f"The following input '{smiles}' is not a valid SMILES", gr.update(visible=False)
# 4) Interface Gradio (sem mudanças)
with gr.Blocks() as demo:
gr.Markdown(
"""
# SMI-TED-Embeddings-Extraction
**Single mode:** paste a SMILES string in the left box.
**Batch mode:** upload a CSV file where each row has a SMILES in the first column.
- **Maximum 1000 SMILES per batch.** Processing time increases with batch size due to Hugging Face environment limits.
_This is just a demo environment; for heavy-duty usage, please visit:_
https://github.com/IBM/materials/tree/main/models/smi_ted
to download the model and run your own experiments.
- In both cases, an `embeddings.csv` file will be extracted for download, with the first column as SMILES and the embedding values in the following columns.
"""
)
with gr.Row():
smiles_in = gr.Textbox(label="SMILES (single mode)", placeholder="e.g. CCO")
file_in = gr.File(label="SMILES CSV (batch mode)", file_types=[".csv"])
generate_btn = gr.Button("Extract Embeddings")
with gr.Row():
output_msg = gr.Textbox(label="Message / Embedding (JSON)", interactive=False, lines=4)
download_csv = gr.File(label="Download embeddings.csv", visible=False)
generate_btn.click(
fn=process_inputs,
inputs=[smiles_in, file_in],
outputs=[output_msg, download_csv]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")