SMI-TED-demo1 / app.py
Enzo Reis de Oliveira
Error fix
e1e6b13
raw
history blame
2.21 kB
import os
import sys
import json
import tempfile
import pandas as pd
import gradio as gr
# 1) Ajuste de path ANTES de importar smi_ted_light
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
INFERENCE_PATH = os.path.join(BASE_DIR, "smi-ted", "inference")
sys.path.insert(0, INFERENCE_PATH)
from smi_ted_light.load import load_smi_ted
# 2) Carrega o modelo
MODEL_DIR = os.path.join(INFERENCE_PATH, "smi_ted_light")
model = load_smi_ted(
folder=MODEL_DIR,
ckpt_filename="smi-ted-Light_40.pt",
vocab_filename="bert_vocab_curated.txt",
)
# 3) Função que retorna STRING JSON + gr.update para o CSV
def gerar_embedding_e_csv(smiles: str):
smiles = smiles.strip()
if not smiles:
erro = {"erro": "digite uma sequência SMILES primeiro"}
return json.dumps(erro), gr.update(visible=False)
try:
vetor = model.encode(smiles, return_torch=True)[0].tolist()
# monta CSV
df = pd.DataFrame([vetor])
tmp = tempfile.NamedTemporaryFile(suffix=".csv", delete=False)
df.to_csv(tmp.name, index=False)
tmp.close()
# retorna JSON-string e torna o link visível
return json.dumps(vetor), gr.update(value=tmp.name, visible=True)
except Exception as e:
erro = {"erro": str(e)}
return json.dumps(erro), gr.update(visible=False)
# 4) Interface Blocks
with gr.Blocks() as demo:
gr.Markdown(
"""
## SMI-TED Embedding Generator
Cole uma sequência SMILES e receba:
1. Uma **string JSON** com o vetor (Textbox)
2. Um link para **baixar o CSV** (File)
"""
)
with gr.Row():
inp_smiles = gr.Textbox(label="SMILES", placeholder="Ex.: CCO")
btn = gr.Button("Gerar Embedding")
with gr.Row():
out_text = gr.Textbox(
label="Embedding (JSON)",
interactive=False,
lines=4,
placeholder='Vai aparecer aqui o vetor como JSON...'
)
out_file = gr.File(label="Download do CSV", visible=False)
btn.click(
fn=gerar_embedding_e_csv,
inputs=inp_smiles,
outputs=[out_text, out_file]
)
if __name__ == "__main__":
demo.launch()