Spaces:
Running
Running
add pos-egnn
Browse files- models/fm4m.py +23 -5
- models/pos_egnn/.gitignore +158 -0
- models/pos_egnn/README.md +40 -0
- models/pos_egnn/example.ipynb +250 -0
- models/pos_egnn/inputs/3BPA.xyz +29 -0
- models/pos_egnn/load.py +63 -0
- models/pos_egnn/posegnn/__init__.py +3 -0
- models/pos_egnn/posegnn/calculator.py +65 -0
- models/pos_egnn/posegnn/encoder.py +621 -0
- models/pos_egnn/posegnn/model.py +99 -0
- models/pos_egnn/posegnn/ops.py +1584 -0
- models/pos_egnn/posegnn/utils.py +69 -0
- models/pos_egnn/requirements.txt +10 -0
- requirements.txt +2 -0
models/fm4m.py
CHANGED
@@ -32,6 +32,7 @@ from models.selfies_ted.load import SELFIES as bart
|
|
32 |
from models.mhg_model import load as mhg
|
33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
34 |
from models.smi_ssed.load import load_smi_ssed
|
|
|
35 |
|
36 |
import mordred
|
37 |
from mordred import Calculator, descriptors
|
@@ -60,6 +61,7 @@ def avail_models_data():
|
|
60 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
61 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
62 |
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"},
|
|
|
63 |
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}]
|
64 |
|
65 |
|
@@ -71,6 +73,7 @@ def avail_models(raw=False):
|
|
71 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
72 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
73 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
|
|
74 |
{"Name": "Mordred", "Model Name": "Mordred","Description": "Baseline: A descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors"},
|
75 |
{"Name": "MorganFingerprint", "Model Name": "MorganFingerprint","Description": "Baseline: Circular atom environments based descriptor"}
|
76 |
]
|
@@ -150,6 +153,7 @@ def reset():
|
|
150 |
{"Name": "mol-xl", "Description": "MolFormer model for string based SMILES modality",
|
151 |
"Timestamp": "2024-06-21 12:35:56"},
|
152 |
{"Name": "mhg", "Description": "MHG", "Timestamp": "2024-07-10 00:09:42"},
|
|
|
153 |
{"Name": "spec-gru", "Description": "Spectrum modality with GRU", "Timestamp": "2024-07-10 00:09:42"},
|
154 |
{"Name": "spec-lstm", "Description": "Spectrum modality with LSTM", "Timestamp": "2024-07-10 00:09:54"},
|
155 |
{"Name": "3d-vae", "Description": "VAE model for 3D atom positions", "Timestamp": "2024-07-10 00:10:08"}]
|
@@ -204,7 +208,9 @@ avail_models_data()
|
|
204 |
|
205 |
|
206 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
207 |
-
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
|
|
|
|
208 |
if model_type in alias.keys():
|
209 |
model_type = alias[model_type]
|
210 |
|
@@ -227,6 +233,12 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
227 |
x_batch = model.encode(train_data, return_tensor=return_tensor)
|
228 |
x_batch_test = model.encode(test_data, return_tensor=return_tensor)
|
229 |
|
|
|
|
|
|
|
|
|
|
|
|
|
230 |
elif model_type == "smi-ted":
|
231 |
model = load_smi_ted(folder='../models/smi_ted/smi_ted_light', ckpt_filename='smi-ted-Light_40.pt')
|
232 |
with torch.no_grad():
|
@@ -314,7 +326,9 @@ def get_representation(train_data,test_data,model_type, return_tensor=True):
|
|
314 |
|
315 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
316 |
print(model)
|
317 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
|
|
|
|
318 |
data = avail_models(raw=True)
|
319 |
df = pd.DataFrame(data)
|
320 |
#print(list(df["Name"].values))
|
@@ -383,13 +397,14 @@ def single_modal(model,dataset=None, downstream_model=None, params=None, x_train
|
|
383 |
print(f'x_batch_test Nan index: {nan_indices}')
|
384 |
print(f'x_batch_test shape: {x_batch_test.shape}, y_batch_test len: {len(y_batch_test)}')
|
385 |
|
386 |
-
print(f" Calculating ROC AUC Score ...")
|
387 |
|
388 |
if downstream_model == "XGBClassifier":
|
389 |
if params == None:
|
390 |
xgb_predict_concat = XGBClassifier()
|
391 |
else:
|
392 |
xgb_predict_concat = XGBClassifier(**params) # n_estimators=5000, learning_rate=0.01, max_depth=10
|
|
|
393 |
xgb_predict_concat.fit(x_batch, y_batch)
|
394 |
|
395 |
y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]
|
@@ -628,7 +643,10 @@ def multi_modal(model_list,dataset=None, downstream_model=None,params=None, x_tr
|
|
628 |
df = pd.DataFrame(data)
|
629 |
list(df["Name"].values)
|
630 |
|
631 |
-
alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted","SMI-SSED":"smi-ssed", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
|
|
|
|
|
|
632 |
#if set(model_list).issubset(list(df["Name"].values)):
|
633 |
if set(model_list).issubset(list(alias.keys())):
|
634 |
for i, model in enumerate(model_list):
|
@@ -717,7 +735,7 @@ def multi_modal(model_list,dataset=None, downstream_model=None,params=None, x_tr
|
|
717 |
|
718 |
print("Generating latent plots : Done")
|
719 |
|
720 |
-
print(f" Calculating ROC AUC Score ...")
|
721 |
|
722 |
|
723 |
if downstream_model == "XGBClassifier":
|
|
|
32 |
from models.mhg_model import load as mhg
|
33 |
from models.smi_ted.smi_ted_light.load import load_smi_ted
|
34 |
from models.smi_ssed.load import load_smi_ssed
|
35 |
+
from models.pos_egnn.load import POSEGNN as pos
|
36 |
|
37 |
import mordred
|
38 |
from mordred import Calculator, descriptors
|
|
|
61 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
|
62 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
|
63 |
{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"},
|
64 |
+
{"Name": "pos-egnn", "Model Name": "POS-EGNN","Description": "3D atom position model", "Timestamp": "2025-04-04 00:11:42"},
|
65 |
{"Name": "smi-ssed", "Model Name": "SMI-SSED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}]
|
66 |
|
67 |
|
|
|
73 |
{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
|
74 |
{"Name": "mol-xl","Model Name": "MolFormer", "Description": "MolFormer model for string based SMILES modality"},
|
75 |
{"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
|
76 |
+
{"Name": "pos", "Model Name": "POS-EGNN","Description": "3D atom position model"},
|
77 |
{"Name": "Mordred", "Model Name": "Mordred","Description": "Baseline: A descriptor-calculation software application that can calculate more than 1800 two- and three-dimensional descriptors"},
|
78 |
{"Name": "MorganFingerprint", "Model Name": "MorganFingerprint","Description": "Baseline: Circular atom environments based descriptor"}
|
79 |
]
|
|
|
153 |
{"Name": "mol-xl", "Description": "MolFormer model for string based SMILES modality",
|
154 |
"Timestamp": "2024-06-21 12:35:56"},
|
155 |
{"Name": "mhg", "Description": "MHG", "Timestamp": "2024-07-10 00:09:42"},
|
156 |
+
{"Name": "pos", "Description": "POS-EGNN", "Timestamp": "2024-07-10 00:09:42"},
|
157 |
{"Name": "spec-gru", "Description": "Spectrum modality with GRU", "Timestamp": "2024-07-10 00:09:42"},
|
158 |
{"Name": "spec-lstm", "Description": "Spectrum modality with LSTM", "Timestamp": "2024-07-10 00:09:54"},
|
159 |
{"Name": "3d-vae", "Description": "VAE model for 3D atom positions", "Timestamp": "2024-07-10 00:10:08"}]
|
|
|
208 |
|
209 |
|
210 |
def get_representation(train_data,test_data,model_type, return_tensor=True):
|
211 |
+
#alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
212 |
+
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "SMI-TED": "smi-ted", "POS-EGNN": "pos", "MolFormer": "mol-xl", "Molformer": "mol-xl",
|
213 |
+
}
|
214 |
if model_type in alias.keys():
|
215 |
model_type = alias[model_type]
|
216 |
|
|
|
233 |
x_batch = model.encode(train_data, return_tensor=return_tensor)
|
234 |
x_batch_test = model.encode(test_data, return_tensor=return_tensor)
|
235 |
|
236 |
+
elif model_type == "pos":
|
237 |
+
model = pos()
|
238 |
+
model.load()
|
239 |
+
x_batch = model.encode(train_data, return_tensor=return_tensor)
|
240 |
+
x_batch_test = model.encode(test_data, return_tensor=return_tensor)
|
241 |
+
|
242 |
elif model_type == "smi-ted":
|
243 |
model = load_smi_ted(folder='../models/smi_ted/smi_ted_light', ckpt_filename='smi-ted-Light_40.pt')
|
244 |
with torch.no_grad():
|
|
|
326 |
|
327 |
def single_modal(model,dataset=None, downstream_model=None, params=None, x_train=None, x_test=None, y_train=None, y_test=None):
|
328 |
print(model)
|
329 |
+
#alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted", "SMI-SSED": "smi-ssed"}
|
330 |
+
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "SMI-TED": "smi-ted", "POS-EGNN": "pos", "MolFormer": "mol-xl", "Molformer": "mol-xl",
|
331 |
+
}
|
332 |
data = avail_models(raw=True)
|
333 |
df = pd.DataFrame(data)
|
334 |
#print(list(df["Name"].values))
|
|
|
397 |
print(f'x_batch_test Nan index: {nan_indices}')
|
398 |
print(f'x_batch_test shape: {x_batch_test.shape}, y_batch_test len: {len(y_batch_test)}')
|
399 |
|
400 |
+
print(f"Model selected: {downstream_model} - Calculating ROC AUC Score ...")
|
401 |
|
402 |
if downstream_model == "XGBClassifier":
|
403 |
if params == None:
|
404 |
xgb_predict_concat = XGBClassifier()
|
405 |
else:
|
406 |
xgb_predict_concat = XGBClassifier(**params) # n_estimators=5000, learning_rate=0.01, max_depth=10
|
407 |
+
|
408 |
xgb_predict_concat.fit(x_batch, y_batch)
|
409 |
|
410 |
y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]
|
|
|
643 |
df = pd.DataFrame(data)
|
644 |
list(df["Name"].values)
|
645 |
|
646 |
+
#alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "Molformer": "mol-xl","SMI-TED":"smi-ted","SMI-SSED":"smi-ssed", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"}
|
647 |
+
alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "SMI-TED": "smi-ted", "POS-EGNN": "pos", "MolFormer": "mol-xl",
|
648 |
+
"Molformer": "mol-xl", "Mordred": "Mordred", "MorganFingerprint": "MorganFingerprint"
|
649 |
+
}
|
650 |
#if set(model_list).issubset(list(df["Name"].values)):
|
651 |
if set(model_list).issubset(list(alias.keys())):
|
652 |
for i, model in enumerate(model_list):
|
|
|
735 |
|
736 |
print("Generating latent plots : Done")
|
737 |
|
738 |
+
print(f"Model selected: {downstream_model} - Calculating ROC AUC Score ...")
|
739 |
|
740 |
|
741 |
if downstream_model == "XGBClassifier":
|
models/pos_egnn/.gitignore
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
data/
|
2 |
+
!/morningstar/data/
|
3 |
+
!/tests/data
|
4 |
+
.ruff*
|
5 |
+
lightning_logs/
|
6 |
+
.DS_Store
|
7 |
+
.vscode
|
8 |
+
|
9 |
+
# Useful scratch subfolder
|
10 |
+
_scratch
|
11 |
+
|
12 |
+
# Byte-compiled / optimized / DLL files
|
13 |
+
__pycache__/
|
14 |
+
*.py[cod]
|
15 |
+
*$py.class
|
16 |
+
|
17 |
+
# C extensions
|
18 |
+
*.so
|
19 |
+
|
20 |
+
# Distribution / packaging
|
21 |
+
.Python
|
22 |
+
build/
|
23 |
+
develop-eggs/
|
24 |
+
dist/
|
25 |
+
downloads/
|
26 |
+
eggs/
|
27 |
+
.eggs/
|
28 |
+
lib/
|
29 |
+
lib64/
|
30 |
+
parts/
|
31 |
+
sdist/
|
32 |
+
var/
|
33 |
+
wheels/
|
34 |
+
pip-wheel-metadata/
|
35 |
+
share/python-wheels/
|
36 |
+
*.egg-info/
|
37 |
+
.installed.cfg
|
38 |
+
*.egg
|
39 |
+
MANIFEST
|
40 |
+
|
41 |
+
# PyInstaller
|
42 |
+
# Usually these files are written by a python script from a template
|
43 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
44 |
+
*.manifest
|
45 |
+
*.spec
|
46 |
+
|
47 |
+
# Installer logs
|
48 |
+
pip-log.txt
|
49 |
+
pip-delete-this-directory.txt
|
50 |
+
|
51 |
+
# Unit test / coverage reports
|
52 |
+
htmlcov/
|
53 |
+
.tox/
|
54 |
+
.nox/
|
55 |
+
.coverage
|
56 |
+
.coverage.*
|
57 |
+
.cache
|
58 |
+
nosetests.xml
|
59 |
+
coverage.xml
|
60 |
+
*.cover
|
61 |
+
*.py,cover
|
62 |
+
.hypothesis/
|
63 |
+
.pytest_cache/
|
64 |
+
|
65 |
+
# Translations
|
66 |
+
*.mo
|
67 |
+
*.pot
|
68 |
+
|
69 |
+
# Django stuff:
|
70 |
+
*.log
|
71 |
+
local_settings.py
|
72 |
+
db.sqlite3
|
73 |
+
db.sqlite3-journal
|
74 |
+
|
75 |
+
# Flask stuff:
|
76 |
+
instance/
|
77 |
+
.webassets-cache
|
78 |
+
|
79 |
+
# Scrapy stuff:
|
80 |
+
.scrapy
|
81 |
+
|
82 |
+
# Sphinx documentation
|
83 |
+
docs/_build/
|
84 |
+
|
85 |
+
# PyBuilder
|
86 |
+
target/
|
87 |
+
|
88 |
+
# Jupyter Notebook
|
89 |
+
.ipynb_checkpoints
|
90 |
+
|
91 |
+
# IPython
|
92 |
+
profile_default/
|
93 |
+
ipython_config.py
|
94 |
+
|
95 |
+
# pyenv
|
96 |
+
.python-version
|
97 |
+
|
98 |
+
# pipenv
|
99 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
100 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
101 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
102 |
+
# install all needed dependencies.
|
103 |
+
*.Pipfile.lock
|
104 |
+
|
105 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
106 |
+
__pypackages__/
|
107 |
+
|
108 |
+
# Celery stuff
|
109 |
+
celerybeat-schedule
|
110 |
+
celerybeat.pid
|
111 |
+
|
112 |
+
# SageMath parsed files
|
113 |
+
*.sage.py
|
114 |
+
|
115 |
+
# Environments
|
116 |
+
.env
|
117 |
+
.venv
|
118 |
+
env/
|
119 |
+
venv/
|
120 |
+
ENV/
|
121 |
+
env.bak/
|
122 |
+
venv.bak/
|
123 |
+
|
124 |
+
# Spyder project settings
|
125 |
+
.spyderproject
|
126 |
+
.spyproject
|
127 |
+
|
128 |
+
# Rope project settings
|
129 |
+
.ropeproject
|
130 |
+
|
131 |
+
# mkdocs documentation
|
132 |
+
/site
|
133 |
+
|
134 |
+
# mypy
|
135 |
+
.mypy_cache/
|
136 |
+
.dmypy.json
|
137 |
+
dmypy.json
|
138 |
+
|
139 |
+
# Pyre type checker
|
140 |
+
.pyre/
|
141 |
+
|
142 |
+
temp_data/
|
143 |
+
.aim/
|
144 |
+
csv_logs/
|
145 |
+
|
146 |
+
# Dataset files
|
147 |
+
*data.mdb
|
148 |
+
*.zip
|
149 |
+
*.tar.gz
|
150 |
+
|
151 |
+
/plots
|
152 |
+
/checkpoints
|
153 |
+
/data*
|
154 |
+
|
155 |
+
*.err
|
156 |
+
*.out
|
157 |
+
*.ckpt
|
158 |
+
output.xyz
|
models/pos_egnn/README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Position-based Equivariant Graph Neural Network (`pos-egnn`)
|
2 |
+
This repository contains PyTorch source code for loading and performing inference using the `pos-egnn`, a foundation model for Chemistry and Materials.
|
3 |
+
|
4 |
+
**GitHub**: https://github.com/ibm/materials
|
5 |
+
|
6 |
+
**HuggingFace**: https://huggingface.co/ibm-research/materials.pos-egnn
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
<img src="../../img/posegnn.svg">
|
10 |
+
</p>
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
We present `pos-egnn`, a Position-based Equivariant Graph Neural Network foundation model for Chemistry and Materials. The model was pre-trained on 1.4M samples (i.e., 90%) from the Materials Project Trajectory (MPtrj) dataset to predict energies, forces and stress. `pos-egnn` can be used as a machine-learning potential, as a feature extractor, or can be fine-tuned for specific downstream tasks.
|
14 |
+
|
15 |
+
Besides the model weigths `pos-egnn.v1-6M.pt` (download from [HuggingFace](https://huggingface.co/ibm-research/materials.pos-egnn)), we also provide an `example.ipynb` notebook (download from [GitHub](https://github.com/ibm/materials)), which demonstrates how to perform inference, feature extraction and molecular dynamics simulation with the model.
|
16 |
+
|
17 |
+
For more information, please reach out to [email protected] and/or [email protected]
|
18 |
+
|
19 |
+
## Table of Contents
|
20 |
+
1. [**Getting Started**](#getting-started)
|
21 |
+
2. [**Example**](#example)
|
22 |
+
|
23 |
+
## Getting Started
|
24 |
+
Follow these steps to replicate our environment and install the necessary libraries:
|
25 |
+
|
26 |
+
First, make sure to have Python 3.11 installed. Then, to create the virtual environment, run the following commands:
|
27 |
+
|
28 |
+
```bash
|
29 |
+
python3.11 -m venv env
|
30 |
+
source env/bin/activate
|
31 |
+
```
|
32 |
+
|
33 |
+
Run the following command to install the library dependencies.
|
34 |
+
|
35 |
+
```bash
|
36 |
+
pip install -r requirements.txt
|
37 |
+
```
|
38 |
+
|
39 |
+
## Example
|
40 |
+
Please refer to the `example.ipynb` for a step-by-step demonstration on how to perform inference, feature extraction and molecular dynamics simulation with the model.
|
models/pos_egnn/example.ipynb
ADDED
@@ -0,0 +1,250 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# POS-EGNN "
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "markdown",
|
12 |
+
"metadata": {},
|
13 |
+
"source": [
|
14 |
+
"## Setup"
|
15 |
+
]
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [],
|
22 |
+
"source": [
|
23 |
+
"# Uncomment to install notebook-only dependencies\n",
|
24 |
+
"# !pip install nglview ipywidgets"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 2,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [
|
32 |
+
{
|
33 |
+
"data": {
|
34 |
+
"application/vnd.jupyter.widget-view+json": {
|
35 |
+
"model_id": "4bac12c6048044898065f0778d95caeb",
|
36 |
+
"version_major": 2,
|
37 |
+
"version_minor": 0
|
38 |
+
},
|
39 |
+
"text/plain": []
|
40 |
+
},
|
41 |
+
"metadata": {},
|
42 |
+
"output_type": "display_data"
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"import nglview as nv\n",
|
47 |
+
"import torch\n",
|
48 |
+
"from ase import units\n",
|
49 |
+
"from ase.io import read\n",
|
50 |
+
"from ase.md.langevin import Langevin\n",
|
51 |
+
"\n",
|
52 |
+
"from posegnn.calculator import PosEGNNCalculator"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "code",
|
57 |
+
"execution_count": 3,
|
58 |
+
"metadata": {},
|
59 |
+
"outputs": [],
|
60 |
+
"source": [
|
61 |
+
"device = \"cpu\"\n",
|
62 |
+
"torch.set_float32_matmul_precision(\"high\")"
|
63 |
+
]
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"cell_type": "markdown",
|
67 |
+
"metadata": {},
|
68 |
+
"source": [
|
69 |
+
"## Feature Extraction"
|
70 |
+
]
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"cell_type": "code",
|
74 |
+
"execution_count": 4,
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"# Please download checkpoint from https://huggingface.co/ibm-research/materials.pos-egnn\n",
|
79 |
+
"calculator = PosEGNNCalculator(\"pos-egnn.v1-6M.ckpt\", device=device, compute_stress=False)\n",
|
80 |
+
"atoms = read(\"inputs/3BPA.xyz\", index=0)\n",
|
81 |
+
"atoms.calc = calculator"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 5,
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [
|
89 |
+
{
|
90 |
+
"data": {
|
91 |
+
"text/plain": [
|
92 |
+
"torch.Size([27, 256])"
|
93 |
+
]
|
94 |
+
},
|
95 |
+
"execution_count": 5,
|
96 |
+
"metadata": {},
|
97 |
+
"output_type": "execute_result"
|
98 |
+
}
|
99 |
+
],
|
100 |
+
"source": [
|
101 |
+
"embeddings = atoms.get_invariant_embeddings()\n",
|
102 |
+
"embeddings.shape"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"metadata": {},
|
108 |
+
"source": [
|
109 |
+
"## Inference"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": 6,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"energy = atoms.get_potential_energy()\n",
|
119 |
+
"forces = atoms.get_forces()"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": 7,
|
125 |
+
"metadata": {},
|
126 |
+
"outputs": [
|
127 |
+
{
|
128 |
+
"data": {
|
129 |
+
"text/plain": [
|
130 |
+
"(array([-175.05188], dtype=float32),\n",
|
131 |
+
" array([[ 0.34280202, -0.41967863, 0.7246248 ],\n",
|
132 |
+
" [-0.86854756, -0.12186409, -2.305024 ],\n",
|
133 |
+
" [ 0.26306945, 0.06607065, 0.85476065],\n",
|
134 |
+
" [-0.230737 , 0.02304646, -0.5161394 ],\n",
|
135 |
+
" [-0.43901953, 2.7678285 , -0.70297724],\n",
|
136 |
+
" [ 0.03933215, -0.50390136, 1.0451801 ],\n",
|
137 |
+
" [ 0.37628424, -2.2708364 , -0.7662437 ],\n",
|
138 |
+
" [ 0.25884533, -1.6086004 , -0.08700082],\n",
|
139 |
+
" [-0.09319548, -0.24666801, -0.48069426],\n",
|
140 |
+
" [ 0.01849201, 1.001767 , 2.151208 ],\n",
|
141 |
+
" [-0.46055827, 1.3630681 , -0.38470453],\n",
|
142 |
+
" [ 0.38605827, -0.32170498, 0.6269282 ],\n",
|
143 |
+
" [-0.29103595, 0.22509174, -0.26729944],\n",
|
144 |
+
" [ 1.3340423 , -1.727819 , -0.08812339],\n",
|
145 |
+
" [-0.96442086, 1.1447092 , 1.0665402 ],\n",
|
146 |
+
" [-0.74679977, 0.56782806, 0.03098067],\n",
|
147 |
+
" [ 0.42040402, 0.7405614 , -0.6953748 ],\n",
|
148 |
+
" [-0.25654212, 0.25282693, 0.25414664],\n",
|
149 |
+
" [ 2.0051584 , -0.38257334, -0.26911467],\n",
|
150 |
+
" [-0.00743119, 0.43786597, -0.27683535],\n",
|
151 |
+
" [ 0.64563835, -0.5602143 , -0.11240276],\n",
|
152 |
+
" [-0.00601408, -1.03808 , 0.23635206],\n",
|
153 |
+
" [-0.04149596, 0.02955294, -0.06748012],\n",
|
154 |
+
" [-0.86066115, 0.00299245, 0.06783121],\n",
|
155 |
+
" [-0.05461264, 0.05352221, -0.06844339],\n",
|
156 |
+
" [-0.26291835, 0.58347785, 0.19614606],\n",
|
157 |
+
" [-0.50613666, -0.05826864, -0.16684091]], dtype=float32))"
|
158 |
+
]
|
159 |
+
},
|
160 |
+
"execution_count": 7,
|
161 |
+
"metadata": {},
|
162 |
+
"output_type": "execute_result"
|
163 |
+
}
|
164 |
+
],
|
165 |
+
"source": [
|
166 |
+
"energy, forces"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "markdown",
|
171 |
+
"metadata": {},
|
172 |
+
"source": [
|
173 |
+
"## Molecular Dynamics Simulation"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": 11,
|
179 |
+
"metadata": {},
|
180 |
+
"outputs": [
|
181 |
+
{
|
182 |
+
"data": {
|
183 |
+
"text/plain": [
|
184 |
+
"True"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
"execution_count": 11,
|
188 |
+
"metadata": {},
|
189 |
+
"output_type": "execute_result"
|
190 |
+
}
|
191 |
+
],
|
192 |
+
"source": [
|
193 |
+
"dyn = Langevin(atoms=atoms, friction=0.005, temperature_K=310, timestep=0.5 * units.fs)\n",
|
194 |
+
"\n",
|
195 |
+
"def write_frame():\n",
|
196 |
+
" dyn.atoms.write(\"output.xyz\", append=True)\n",
|
197 |
+
"\n",
|
198 |
+
"dyn.attach(write_frame, interval=5)\n",
|
199 |
+
"dyn.run(500)"
|
200 |
+
]
|
201 |
+
},
|
202 |
+
{
|
203 |
+
"cell_type": "code",
|
204 |
+
"execution_count": 12,
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [
|
207 |
+
{
|
208 |
+
"data": {
|
209 |
+
"application/vnd.jupyter.widget-view+json": {
|
210 |
+
"model_id": "139d7605baca43d79ea515d3454d9941",
|
211 |
+
"version_major": 2,
|
212 |
+
"version_minor": 0
|
213 |
+
},
|
214 |
+
"text/plain": [
|
215 |
+
"NGLWidget(max_frame=234)"
|
216 |
+
]
|
217 |
+
},
|
218 |
+
"metadata": {},
|
219 |
+
"output_type": "display_data"
|
220 |
+
}
|
221 |
+
],
|
222 |
+
"source": [
|
223 |
+
"traj = read('output.xyz', index=slice(None))\n",
|
224 |
+
"view = nv.show_asetraj(traj)\n",
|
225 |
+
"display(view)"
|
226 |
+
]
|
227 |
+
}
|
228 |
+
],
|
229 |
+
"metadata": {
|
230 |
+
"kernelspec": {
|
231 |
+
"display_name": "py311",
|
232 |
+
"language": "python",
|
233 |
+
"name": "python3"
|
234 |
+
},
|
235 |
+
"language_info": {
|
236 |
+
"codemirror_mode": {
|
237 |
+
"name": "ipython",
|
238 |
+
"version": 3
|
239 |
+
},
|
240 |
+
"file_extension": ".py",
|
241 |
+
"mimetype": "text/x-python",
|
242 |
+
"name": "python",
|
243 |
+
"nbconvert_exporter": "python",
|
244 |
+
"pygments_lexer": "ipython3",
|
245 |
+
"version": "3.11.11"
|
246 |
+
}
|
247 |
+
},
|
248 |
+
"nbformat": 4,
|
249 |
+
"nbformat_minor": 2
|
250 |
+
}
|
models/pos_egnn/inputs/3BPA.xyz
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
27
|
2 |
+
Lattice="50.0 0.0 0.0 0.0 50.0 0.0 0.0 0.0 50.0" Properties=species:S:1:pos:R:3
|
3 |
+
C 0.32656990 -1.01286015 0.72107275
|
4 |
+
C -0.19461567 0.25830309 0.83413890
|
5 |
+
C 0.79249430 -1.60244652 1.90438013
|
6 |
+
H 0.43514812 -1.59784402 -0.17897327
|
7 |
+
C -0.06984110 0.97877174 2.04804512
|
8 |
+
O -0.82551374 0.94764149 -0.23208227
|
9 |
+
N -0.29006580 2.37382353 1.86234713
|
10 |
+
N 0.38837699 0.47664821 3.17063941
|
11 |
+
H -0.98416331 2.63164516 1.17783211
|
12 |
+
H -0.35613357 2.91935548 2.65951281
|
13 |
+
C 0.72925588 -0.88036074 3.09652633
|
14 |
+
H 0.89111308 -1.33212550 4.04892841
|
15 |
+
H 1.21249480 -2.61699312 1.95761271
|
16 |
+
C -1.55059042 0.13992010 -1.19894310
|
17 |
+
C -2.93143480 -0.31868852 -0.84882155
|
18 |
+
H -0.88027102 -0.72270141 -1.50495635
|
19 |
+
H -1.71075243 0.76854244 -2.05655313
|
20 |
+
C -3.36709795 -1.63868610 -0.72393961
|
21 |
+
C -3.88193920 0.73797993 -0.59066374
|
22 |
+
C -4.66143774 -1.92714685 -0.27081530
|
23 |
+
H -2.71536973 -2.46157596 -0.92494411
|
24 |
+
C -5.57704224 -0.87827710 -0.11327951
|
25 |
+
H -4.95294558 -2.96156288 -0.08227495
|
26 |
+
C -5.17381471 0.43421272 -0.29908870
|
27 |
+
H -6.59525001 -1.10219470 0.20624618
|
28 |
+
H -5.92759350 1.19353463 -0.20195647
|
29 |
+
H -3.44855719 1.74786696 -0.56747187
|
models/pos_egnn/load.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from .posegnn.calculator import PosEGNNCalculator
|
3 |
+
import ase
|
4 |
+
from ase import Atoms
|
5 |
+
from rdkit import Chem
|
6 |
+
from rdkit.Chem import AllChem
|
7 |
+
import pandas as pd
|
8 |
+
import numpy as np
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
torch.set_float32_matmul_precision("high")
|
13 |
+
|
14 |
+
def smiles_to_atoms(smiles):
|
15 |
+
mol = Chem.AddHs(Chem.MolFromSmiles(smiles))
|
16 |
+
AllChem.EmbedMolecule(mol)
|
17 |
+
ase_atoms = ase.Atoms(
|
18 |
+
numbers=[
|
19 |
+
atom.GetAtomicNum() for atom in mol.GetAtoms()
|
20 |
+
],
|
21 |
+
positions=mol.GetConformer().GetPositions()
|
22 |
+
)
|
23 |
+
return ase_atoms
|
24 |
+
|
25 |
+
class POSEGNN():
|
26 |
+
def __init__(self, use_gpu=True):
|
27 |
+
device = "cuda" if use_gpu and torch.cuda.is_available() else "cpu"
|
28 |
+
self.device = device
|
29 |
+
self.calculator = None
|
30 |
+
|
31 |
+
def load(self, checkpoint=None):
|
32 |
+
repo_id = "ibm-research/materials.pos-egnn"
|
33 |
+
filename = "pytorch_model.bin"
|
34 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
35 |
+
self.calculator = PosEGNNCalculator(model_path, device=self.device, compute_stress=False)
|
36 |
+
|
37 |
+
def encode(self, smiles_list, return_tensor=False, batch_size=32):
|
38 |
+
results = []
|
39 |
+
|
40 |
+
# make batch-wise processing with progress bar
|
41 |
+
for i in tqdm(range(0, len(smiles_list), batch_size), desc="Batch Encoding"):
|
42 |
+
batch = smiles_list[i:i+batch_size]
|
43 |
+
atoms_batch = []
|
44 |
+
|
45 |
+
for smiles in batch:
|
46 |
+
try:
|
47 |
+
atoms = smiles_to_atoms(smiles)
|
48 |
+
atoms.calc = self.calculator
|
49 |
+
atoms_batch.append(atoms)
|
50 |
+
except Exception as e:
|
51 |
+
print(f"Skipping {smiles}: {e}")
|
52 |
+
|
53 |
+
if atoms_batch:
|
54 |
+
embeddings = [a.get_invariant_embeddings().mean(dim=0).cpu() for a in atoms_batch]
|
55 |
+
batch_tensor = torch.stack(embeddings)
|
56 |
+
results.append(batch_tensor)
|
57 |
+
|
58 |
+
if not results:
|
59 |
+
raise RuntimeError("No valid SMILES could be processed.")
|
60 |
+
|
61 |
+
all_embeddings = torch.cat(results, dim=0)
|
62 |
+
return all_embeddings if return_tensor else pd.DataFrame(all_embeddings.numpy())
|
63 |
+
|
models/pos_egnn/posegnn/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from . import calculator, encoder, model, ops, utils
|
2 |
+
|
3 |
+
__all__ = ["calculator", "encoder", "model", "ops", "utils"]
|
models/pos_egnn/posegnn/calculator.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from ase import Atoms
|
4 |
+
from ase.calculators.calculator import Calculator, all_changes
|
5 |
+
from ase.data import atomic_numbers
|
6 |
+
from ase.stress import full_3x3_to_voigt_6_stress
|
7 |
+
from torch_geometric.data.data import Data
|
8 |
+
|
9 |
+
from .model import PosEGNN
|
10 |
+
|
11 |
+
|
12 |
+
class PosEGNNCalculator(Calculator):
|
13 |
+
def __init__(self, checkpoint: str, device: str, compute_stress: bool = True, **kwargs):
|
14 |
+
Calculator.__init__(self, **kwargs)
|
15 |
+
|
16 |
+
checkpoint_dict = torch.load(checkpoint, weights_only=True, map_location=device)
|
17 |
+
|
18 |
+
self.model = PosEGNN(checkpoint_dict["config"])
|
19 |
+
self.model.load_state_dict(checkpoint_dict["state_dict"], strict=True)
|
20 |
+
self.model.eval()
|
21 |
+
|
22 |
+
self.model.to(device)
|
23 |
+
self.model.eval()
|
24 |
+
|
25 |
+
self.implemented_properties = ["energy", "forces"]
|
26 |
+
self.implemented_properties += ["stress"] if compute_stress else []
|
27 |
+
self.device = device
|
28 |
+
self.compute_stress = compute_stress
|
29 |
+
|
30 |
+
def calculate(self, atoms=None, properties=None, system_changes=all_changes):
|
31 |
+
Calculator.calculate(self, atoms)
|
32 |
+
self.results = {}
|
33 |
+
data = self._build_data(atoms)
|
34 |
+
out = self.model.compute_properties(data, compute_stress=self.compute_stress)
|
35 |
+
|
36 |
+
# Decoder Forward
|
37 |
+
self.results = {
|
38 |
+
"energy": out["total_energy"].cpu().detach().numpy(),
|
39 |
+
"forces": out["force"].cpu().detach().numpy()
|
40 |
+
}
|
41 |
+
if self.compute_stress:
|
42 |
+
self.results.update({
|
43 |
+
"stress": full_3x3_to_voigt_6_stress(out["stress"].cpu().detach().numpy())
|
44 |
+
})
|
45 |
+
|
46 |
+
def _build_data(self, atoms):
|
47 |
+
z = torch.tensor(np.array([atomic_numbers[symbol] for symbol in atoms.symbols]), device=self.device)
|
48 |
+
box = torch.tensor(atoms.get_cell().tolist(), device=self.device).unsqueeze(0).float()
|
49 |
+
pos = torch.tensor(atoms.get_positions().tolist(), device=self.device).float()
|
50 |
+
batch = torch.zeros(len(z), device=self.device).long()
|
51 |
+
ptr = torch.zeros(1, device=self.device).long()
|
52 |
+
return Data(z=z, pos=pos, box=box, batch=batch, num_graphs=1, ptr=ptr)
|
53 |
+
|
54 |
+
|
55 |
+
def get_invariant_embeddings(self):
|
56 |
+
if self.calc is None:
|
57 |
+
raise RuntimeError("No calculator is set.")
|
58 |
+
else:
|
59 |
+
data = self.calc._build_data(self)
|
60 |
+
with torch.no_grad():
|
61 |
+
embeddings = self.calc.model(data)["embedding_0"][..., 1].squeeze(2)
|
62 |
+
return embeddings
|
63 |
+
|
64 |
+
|
65 |
+
Atoms.get_invariant_embeddings = get_invariant_embeddings
|
models/pos_egnn/posegnn/encoder.py
ADDED
@@ -0,0 +1,621 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code was adapted from https://github.com/sarpaykent/GotenNet
|
3 |
+
Copyright (c) 2025 Sarp Aykent
|
4 |
+
MIT License
|
5 |
+
|
6 |
+
GotenNet: Rethinking Efficient 3D Equivariant Graph Neural Networks
|
7 |
+
Sarp Aykent and Tian Xia
|
8 |
+
https://openreview.net/pdf?id=5wxCQDtbMo
|
9 |
+
"""
|
10 |
+
|
11 |
+
from functools import partial
|
12 |
+
from typing import Callable, Optional, Tuple, Union
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import torch
|
16 |
+
import torch.nn as nn
|
17 |
+
import torch.nn.functional as F
|
18 |
+
from torch_geometric.nn import MessagePassing
|
19 |
+
from torch_geometric.typing import OptTensor
|
20 |
+
from torch_geometric.utils import scatter, softmax
|
21 |
+
|
22 |
+
from .ops import (
|
23 |
+
MLP,
|
24 |
+
CosineCutoff,
|
25 |
+
Dense,
|
26 |
+
EdgeInit,
|
27 |
+
NodeInit,
|
28 |
+
TensorInit,
|
29 |
+
TensorLayerNorm,
|
30 |
+
get_weight_init_by_string,
|
31 |
+
parse_update_info,
|
32 |
+
str2act,
|
33 |
+
str2basis,
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
def lmax_tensor_size(lmax):
|
38 |
+
return ((lmax + 1) ** 2) - 1
|
39 |
+
|
40 |
+
|
41 |
+
def split_degree(tensor, lmax, dim=-1): # default to last dim
|
42 |
+
cumsum = 0
|
43 |
+
tensors = []
|
44 |
+
for i in range(1, lmax + 1):
|
45 |
+
count = lmax_tensor_size(i) - lmax_tensor_size(i - 1)
|
46 |
+
# Create slice object for the specified dimension
|
47 |
+
slc = [slice(None)] * tensor.ndim # Create list of slice(None) for all dims
|
48 |
+
slc[dim] = slice(cumsum, cumsum + count) # Replace desired dim with actual slice
|
49 |
+
tensors.append(tensor[tuple(slc)])
|
50 |
+
cumsum += count
|
51 |
+
return tensors
|
52 |
+
|
53 |
+
|
54 |
+
class GATA(MessagePassing):
|
55 |
+
def __init__(
|
56 |
+
self,
|
57 |
+
n_atom_basis: int,
|
58 |
+
activation: Callable,
|
59 |
+
weight_init=nn.init.xavier_uniform_,
|
60 |
+
bias_init=nn.init.zeros_,
|
61 |
+
aggr="add",
|
62 |
+
node_dim=0,
|
63 |
+
epsilon: float = 1e-7,
|
64 |
+
layer_norm=False,
|
65 |
+
vector_norm=False,
|
66 |
+
cutoff=5.0,
|
67 |
+
num_heads=8,
|
68 |
+
dropout=0.0,
|
69 |
+
edge_updates=True,
|
70 |
+
last_layer=False,
|
71 |
+
scale_edge=True,
|
72 |
+
edge_ln="",
|
73 |
+
evec_dim=None,
|
74 |
+
emlp_dim=None,
|
75 |
+
sep_vecj=True,
|
76 |
+
lmax=1,
|
77 |
+
):
|
78 |
+
"""
|
79 |
+
Args:
|
80 |
+
n_atom_basis (int): Number of features to describe atomic environments.
|
81 |
+
activation (Callable): Activation function to be used. If None, no activation function is used.
|
82 |
+
weight_init (Callable): Weight initialization function.
|
83 |
+
bias_init (Callable): Bias initialization function.
|
84 |
+
aggr (str): Aggregation method ('add', 'mean' or 'max').
|
85 |
+
node_dim (int): The axis along which to aggregate.
|
86 |
+
"""
|
87 |
+
super(GATA, self).__init__(aggr=aggr, node_dim=node_dim)
|
88 |
+
self.lmax = lmax
|
89 |
+
self.sep_vecj = sep_vecj
|
90 |
+
self.epsilon = epsilon
|
91 |
+
self.last_layer = last_layer
|
92 |
+
self.edge_updates = edge_updates
|
93 |
+
self.scale_edge = scale_edge
|
94 |
+
self.activation = activation
|
95 |
+
|
96 |
+
self.update_info = parse_update_info(edge_updates)
|
97 |
+
|
98 |
+
self.dropout = dropout
|
99 |
+
self.n_atom_basis = n_atom_basis
|
100 |
+
|
101 |
+
InitDense = partial(Dense, weight_init=weight_init, bias_init=bias_init)
|
102 |
+
self.gamma_s = nn.Sequential(
|
103 |
+
InitDense(n_atom_basis, n_atom_basis, activation=activation),
|
104 |
+
InitDense(n_atom_basis, 3 * n_atom_basis, activation=None),
|
105 |
+
)
|
106 |
+
|
107 |
+
self.num_heads = num_heads
|
108 |
+
self.q_w = InitDense(n_atom_basis, n_atom_basis, activation=None)
|
109 |
+
self.k_w = InitDense(n_atom_basis, n_atom_basis, activation=None)
|
110 |
+
|
111 |
+
self.gamma_v = nn.Sequential(
|
112 |
+
InitDense(n_atom_basis, n_atom_basis, activation=activation),
|
113 |
+
InitDense(n_atom_basis, 3 * n_atom_basis, activation=None),
|
114 |
+
)
|
115 |
+
|
116 |
+
self.phik_w_ra = InitDense(
|
117 |
+
n_atom_basis,
|
118 |
+
n_atom_basis,
|
119 |
+
activation=activation,
|
120 |
+
)
|
121 |
+
|
122 |
+
InitMLP = partial(MLP, weight_init=weight_init, bias_init=bias_init)
|
123 |
+
|
124 |
+
self.edge_vec_dim = n_atom_basis if evec_dim is None else evec_dim
|
125 |
+
self.edge_mlp_dim = n_atom_basis if emlp_dim is None else emlp_dim
|
126 |
+
if not self.last_layer and self.edge_updates:
|
127 |
+
if self.update_info["mlp"] or self.update_info["mlpa"]:
|
128 |
+
dims = [n_atom_basis, self.edge_mlp_dim, n_atom_basis]
|
129 |
+
else:
|
130 |
+
dims = [n_atom_basis, n_atom_basis]
|
131 |
+
self.edge_attr_up = InitMLP(
|
132 |
+
dims, activation=activation, last_activation=None if self.update_info["mlp"] else self.activation, norm=edge_ln
|
133 |
+
)
|
134 |
+
self.vecq_w = InitDense(n_atom_basis, self.edge_vec_dim, activation=None, bias=False)
|
135 |
+
|
136 |
+
if self.sep_vecj:
|
137 |
+
self.veck_w = nn.ModuleList(
|
138 |
+
[InitDense(n_atom_basis, self.edge_vec_dim, activation=None, bias=False) for i in range(self.lmax)]
|
139 |
+
)
|
140 |
+
else:
|
141 |
+
self.veck_w = InitDense(n_atom_basis, self.edge_vec_dim, activation=None, bias=False)
|
142 |
+
|
143 |
+
if self.update_info["lin_w"] > 0:
|
144 |
+
modules = []
|
145 |
+
if self.update_info["lin_w"] % 10 == 2:
|
146 |
+
modules.append(self.activation)
|
147 |
+
self.lin_w_linear = InitDense(
|
148 |
+
self.edge_vec_dim,
|
149 |
+
n_atom_basis,
|
150 |
+
activation=None,
|
151 |
+
norm="layer" if self.update_info["lin_w"] == 2 else "", # lin_ln in original code but error
|
152 |
+
)
|
153 |
+
modules.append(self.lin_w_linear)
|
154 |
+
self.lin_w = nn.Sequential(*modules)
|
155 |
+
|
156 |
+
self.down_proj = nn.Identity()
|
157 |
+
|
158 |
+
self.cutoff = CosineCutoff(cutoff)
|
159 |
+
self._alpha = None
|
160 |
+
|
161 |
+
self.w_re = InitDense(
|
162 |
+
n_atom_basis,
|
163 |
+
n_atom_basis * 3,
|
164 |
+
None,
|
165 |
+
)
|
166 |
+
|
167 |
+
self.layernorm_ = layer_norm
|
168 |
+
self.vector_norm_ = vector_norm
|
169 |
+
|
170 |
+
if layer_norm:
|
171 |
+
self.layernorm = nn.LayerNorm(n_atom_basis)
|
172 |
+
else:
|
173 |
+
self.layernorm = nn.Identity()
|
174 |
+
if vector_norm:
|
175 |
+
self.tln = TensorLayerNorm(n_atom_basis, trainable=False)
|
176 |
+
else:
|
177 |
+
self.tln = nn.Identity()
|
178 |
+
|
179 |
+
self.reset_parameters()
|
180 |
+
|
181 |
+
def reset_parameters(self):
|
182 |
+
if self.layernorm_:
|
183 |
+
self.layernorm.reset_parameters()
|
184 |
+
if self.vector_norm_:
|
185 |
+
self.tln.reset_parameters()
|
186 |
+
for l in self.gamma_s: # noqa: E741
|
187 |
+
l.reset_parameters()
|
188 |
+
|
189 |
+
self.q_w.reset_parameters()
|
190 |
+
self.k_w.reset_parameters()
|
191 |
+
for l in self.gamma_v: # noqa: E741
|
192 |
+
l.reset_parameters()
|
193 |
+
# self.v_w.reset_parameters()
|
194 |
+
# self.out_w.reset_parameters()
|
195 |
+
self.w_re.reset_parameters()
|
196 |
+
|
197 |
+
if not self.last_layer and self.edge_updates:
|
198 |
+
self.edge_attr_up.reset_parameters()
|
199 |
+
self.vecq_w.reset_parameters()
|
200 |
+
|
201 |
+
if self.sep_vecj:
|
202 |
+
for w in self.veck_w:
|
203 |
+
w.reset_parameters()
|
204 |
+
else:
|
205 |
+
self.veck_w.reset_parameters()
|
206 |
+
|
207 |
+
if self.update_info["lin_w"] > 0:
|
208 |
+
self.lin_w_linear.reset_parameters()
|
209 |
+
|
210 |
+
def forward(
|
211 |
+
self,
|
212 |
+
edge_index,
|
213 |
+
s: torch.Tensor,
|
214 |
+
t: torch.Tensor,
|
215 |
+
dir_ij: torch.Tensor,
|
216 |
+
r_ij: torch.Tensor,
|
217 |
+
d_ij: torch.Tensor,
|
218 |
+
num_edges_expanded: torch.Tensor,
|
219 |
+
):
|
220 |
+
"""Compute interaction output."""
|
221 |
+
s = self.layernorm(s)
|
222 |
+
t = self.tln(t)
|
223 |
+
|
224 |
+
q = self.q_w(s).reshape(-1, self.num_heads, self.n_atom_basis // self.num_heads)
|
225 |
+
k = self.k_w(s).reshape(-1, self.num_heads, self.n_atom_basis // self.num_heads)
|
226 |
+
|
227 |
+
x = self.gamma_s(s)
|
228 |
+
val = self.gamma_v(s)
|
229 |
+
f_ij = r_ij
|
230 |
+
r_ij_attn = self.phik_w_ra(r_ij)
|
231 |
+
r_ij = self.w_re(r_ij)
|
232 |
+
|
233 |
+
# propagate_type: (x: Tensor, ten: Tensor, q:Tensor, k:Tensor, val:Tensor, r_ij: Tensor, r_ij_attn: Tensor, d_ij:Tensor, dir_ij: Tensor, num_edges_expanded: Tensor)
|
234 |
+
su, tu = self.propagate(
|
235 |
+
edge_index=edge_index,
|
236 |
+
x=x,
|
237 |
+
q=q,
|
238 |
+
k=k,
|
239 |
+
val=val,
|
240 |
+
ten=t,
|
241 |
+
r_ij=r_ij,
|
242 |
+
r_ij_attn=r_ij_attn,
|
243 |
+
d_ij=d_ij,
|
244 |
+
dir_ij=dir_ij,
|
245 |
+
num_edges_expanded=num_edges_expanded,
|
246 |
+
) # , f_ij=f_ij
|
247 |
+
|
248 |
+
s = s + su
|
249 |
+
t = t + tu
|
250 |
+
|
251 |
+
if not self.last_layer and self.edge_updates:
|
252 |
+
vec = t
|
253 |
+
|
254 |
+
w1 = self.vecq_w(vec)
|
255 |
+
if self.sep_vecj:
|
256 |
+
vec_split = split_degree(vec, self.lmax, dim=1)
|
257 |
+
w_out = torch.concat([w(vec_split[i]) for i, w in enumerate(self.veck_w)], dim=1)
|
258 |
+
|
259 |
+
else:
|
260 |
+
w_out = self.veck_w(vec)
|
261 |
+
|
262 |
+
# edge_updater_type: (w1: Tensor, w2:Tensor, d_ij: Tensor, f_ij: Tensor)
|
263 |
+
df_ij = self.edge_updater(edge_index, w1=w1, w2=w_out, d_ij=dir_ij, f_ij=f_ij)
|
264 |
+
df_ij = f_ij + df_ij
|
265 |
+
self._alpha = None
|
266 |
+
return s, t, df_ij
|
267 |
+
else:
|
268 |
+
self._alpha = None
|
269 |
+
return s, t, f_ij
|
270 |
+
|
271 |
+
# return s, t
|
272 |
+
|
273 |
+
def message(
|
274 |
+
self,
|
275 |
+
edge_index,
|
276 |
+
x_i: torch.Tensor,
|
277 |
+
x_j: torch.Tensor,
|
278 |
+
q_i: torch.Tensor,
|
279 |
+
k_j: torch.Tensor,
|
280 |
+
val_j: torch.Tensor,
|
281 |
+
ten_j: torch.Tensor,
|
282 |
+
r_ij: torch.Tensor,
|
283 |
+
r_ij_attn: torch.Tensor,
|
284 |
+
d_ij: torch.Tensor,
|
285 |
+
dir_ij: torch.Tensor,
|
286 |
+
num_edges_expanded: torch.Tensor,
|
287 |
+
index: torch.Tensor,
|
288 |
+
ptr: OptTensor,
|
289 |
+
dim_size: Optional[int],
|
290 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
291 |
+
"""
|
292 |
+
Compute message passing.
|
293 |
+
"""
|
294 |
+
|
295 |
+
r_ij_attn = r_ij_attn.reshape(-1, self.num_heads, self.n_atom_basis // self.num_heads)
|
296 |
+
attn = (q_i * k_j * r_ij_attn).sum(dim=-1, keepdim=True)
|
297 |
+
|
298 |
+
attn = softmax(attn, index, ptr, dim_size)
|
299 |
+
|
300 |
+
# Normalize the attention scores
|
301 |
+
if self.scale_edge:
|
302 |
+
norm = torch.sqrt(num_edges_expanded.reshape(-1, 1, 1)) / np.sqrt(self.n_atom_basis)
|
303 |
+
else:
|
304 |
+
norm = 1.0 / np.sqrt(self.n_atom_basis)
|
305 |
+
attn = attn * norm
|
306 |
+
self._alpha = attn
|
307 |
+
attn = F.dropout(attn, p=self.dropout, training=self.training)
|
308 |
+
|
309 |
+
self_attn = attn * val_j.reshape(-1, self.num_heads, (self.n_atom_basis * 3) // self.num_heads)
|
310 |
+
SEA = self_attn.reshape(-1, 1, self.n_atom_basis * 3)
|
311 |
+
|
312 |
+
x = SEA + (r_ij.unsqueeze(1) * x_j * self.cutoff(d_ij.unsqueeze(-1).unsqueeze(-1)))
|
313 |
+
|
314 |
+
o_s, o_d, o_t = torch.split(x, self.n_atom_basis, dim=-1)
|
315 |
+
dmu = o_d * dir_ij[..., None] + o_t * ten_j
|
316 |
+
return o_s, dmu
|
317 |
+
|
318 |
+
@staticmethod
|
319 |
+
def rej(vec, d_ij):
|
320 |
+
vec_proj = (vec * d_ij.unsqueeze(2)).sum(dim=1, keepdim=True)
|
321 |
+
return vec - vec_proj * d_ij.unsqueeze(2)
|
322 |
+
|
323 |
+
def edge_update(self, w1_i, w2_j, w3_j, d_ij, f_ij):
|
324 |
+
if self.sep_vecj:
|
325 |
+
vi = w1_i
|
326 |
+
vj = w2_j
|
327 |
+
vi_split = split_degree(vi, self.lmax, dim=1)
|
328 |
+
vj_split = split_degree(vj, self.lmax, dim=1)
|
329 |
+
d_ij_split = split_degree(d_ij, self.lmax, dim=1)
|
330 |
+
|
331 |
+
pairs = []
|
332 |
+
for i in range(len(vi_split)):
|
333 |
+
if self.update_info["rej"]:
|
334 |
+
w1 = self.rej(vi_split[i], d_ij_split[i])
|
335 |
+
w2 = self.rej(vj_split[i], -d_ij_split[i])
|
336 |
+
pairs.append((w1, w2))
|
337 |
+
else:
|
338 |
+
w1 = vi_split[i]
|
339 |
+
w2 = vj_split[i]
|
340 |
+
pairs.append((w1, w2))
|
341 |
+
elif not self.update_info["rej"]:
|
342 |
+
w1 = w1_i
|
343 |
+
w2 = w2_j
|
344 |
+
pairs = [(w1, w2)]
|
345 |
+
else:
|
346 |
+
w1 = self.rej(w1_i, d_ij)
|
347 |
+
w2 = self.rej(w2_j, -d_ij)
|
348 |
+
pairs = [(w1, w2)]
|
349 |
+
|
350 |
+
w_dot_sum = None
|
351 |
+
for el in pairs:
|
352 |
+
w1, w2 = el
|
353 |
+
w_dot = (w1 * w2).sum(dim=1)
|
354 |
+
if w_dot_sum is None:
|
355 |
+
w_dot_sum = w_dot
|
356 |
+
else:
|
357 |
+
w_dot_sum = w_dot_sum + w_dot
|
358 |
+
w_dot = w_dot_sum
|
359 |
+
if self.update_info["lin_w"] > 0:
|
360 |
+
w_dot = self.lin_w(w_dot)
|
361 |
+
|
362 |
+
if self.update_info["gated"] == "gatedt":
|
363 |
+
w_dot = torch.tanh(w_dot)
|
364 |
+
elif self.update_info["gated"] == "gated":
|
365 |
+
w_dot = torch.sigmoid(w_dot)
|
366 |
+
elif self.update_info["gated"] == "act":
|
367 |
+
w_dot = self.activation(w_dot)
|
368 |
+
|
369 |
+
df_ij = self.edge_attr_up(f_ij) * w_dot
|
370 |
+
return df_ij
|
371 |
+
|
372 |
+
# noinspection PyMethodOverriding
|
373 |
+
def aggregate(
|
374 |
+
self,
|
375 |
+
features: Tuple[torch.Tensor, torch.Tensor],
|
376 |
+
index: torch.Tensor,
|
377 |
+
ptr: Optional[torch.Tensor],
|
378 |
+
dim_size: Optional[int],
|
379 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
380 |
+
x, vec = features
|
381 |
+
x = scatter(x, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
|
382 |
+
vec = scatter(vec, index, dim=self.node_dim, dim_size=dim_size, reduce=self.aggr)
|
383 |
+
return x, vec
|
384 |
+
|
385 |
+
def update(self, inputs: Tuple[torch.Tensor, torch.Tensor]) -> Tuple[torch.Tensor, torch.Tensor]:
|
386 |
+
return inputs
|
387 |
+
|
388 |
+
|
389 |
+
class EQFF(nn.Module):
|
390 |
+
def __init__(
|
391 |
+
self,
|
392 |
+
n_atom_basis: int,
|
393 |
+
activation: Callable,
|
394 |
+
epsilon: float = 1e-8,
|
395 |
+
weight_init=nn.init.xavier_uniform_,
|
396 |
+
bias_init=nn.init.zeros_,
|
397 |
+
vec_dim=None,
|
398 |
+
):
|
399 |
+
"""Equiavariant Feed Forward layer."""
|
400 |
+
super(EQFF, self).__init__()
|
401 |
+
self.n_atom_basis = n_atom_basis
|
402 |
+
|
403 |
+
InitDense = partial(Dense, weight_init=weight_init, bias_init=bias_init)
|
404 |
+
|
405 |
+
vec_dim = n_atom_basis if vec_dim is None else vec_dim
|
406 |
+
context_dim = 2 * n_atom_basis
|
407 |
+
|
408 |
+
self.gamma_m = nn.Sequential(
|
409 |
+
InitDense(context_dim, n_atom_basis, activation=activation),
|
410 |
+
InitDense(n_atom_basis, 2 * n_atom_basis, activation=None),
|
411 |
+
)
|
412 |
+
self.w_vu = InitDense(n_atom_basis, vec_dim, activation=None, bias=False)
|
413 |
+
|
414 |
+
self.epsilon = epsilon
|
415 |
+
|
416 |
+
def reset_parameters(self):
|
417 |
+
self.w_vu.reset_parameters()
|
418 |
+
for l in self.gamma_m: # noqa: E741
|
419 |
+
l.reset_parameters()
|
420 |
+
|
421 |
+
def forward(self, s, v):
|
422 |
+
"""Compute Equivariant Feed Forward output."""
|
423 |
+
|
424 |
+
t_prime = self.w_vu(v)
|
425 |
+
t_prime_mag = torch.sqrt(torch.sum(t_prime**2, dim=-2, keepdim=True) + self.epsilon)
|
426 |
+
combined = [s, t_prime_mag]
|
427 |
+
combined_tensor = torch.cat(combined, dim=-1)
|
428 |
+
m12 = self.gamma_m(combined_tensor)
|
429 |
+
|
430 |
+
m_1, m_2 = torch.split(m12, self.n_atom_basis, dim=-1)
|
431 |
+
delta_v = m_2 * t_prime
|
432 |
+
|
433 |
+
s = s + m_1
|
434 |
+
v = v + delta_v
|
435 |
+
|
436 |
+
return s, v
|
437 |
+
|
438 |
+
|
439 |
+
class GotenNet(nn.Module):
|
440 |
+
def __init__(
|
441 |
+
self,
|
442 |
+
hidden_channels: int = 128,
|
443 |
+
num_layers: int = 8,
|
444 |
+
radial_basis: Union[Callable, str] = "BesselBasis",
|
445 |
+
n_rbf: int = 20,
|
446 |
+
cutoff: float = 5.0,
|
447 |
+
activation: Optional[Union[Callable, str]] = F.silu,
|
448 |
+
max_z: int = 100,
|
449 |
+
epsilon: float = 1e-8,
|
450 |
+
weight_init=nn.init.xavier_uniform_,
|
451 |
+
bias_init=nn.init.zeros_,
|
452 |
+
int_layer_norm=False,
|
453 |
+
int_vector_norm=False,
|
454 |
+
before_mixing_layer_norm=False,
|
455 |
+
after_mixing_layer_norm=False,
|
456 |
+
num_heads=8,
|
457 |
+
attn_dropout=0.0,
|
458 |
+
edge_updates=True,
|
459 |
+
scale_edge=True,
|
460 |
+
lmax=2,
|
461 |
+
aggr="add",
|
462 |
+
edge_ln="",
|
463 |
+
evec_dim=None,
|
464 |
+
emlp_dim=None,
|
465 |
+
sep_int_vec=True,
|
466 |
+
):
|
467 |
+
"""
|
468 |
+
Representation for GotenNet
|
469 |
+
"""
|
470 |
+
super(GotenNet, self).__init__()
|
471 |
+
|
472 |
+
self.scale_edge = scale_edge
|
473 |
+
if type(weight_init) == str: # noqa: E721
|
474 |
+
# print(f"Using {weight_init} weight initialization")
|
475 |
+
weight_init = get_weight_init_by_string(weight_init)
|
476 |
+
|
477 |
+
if type(bias_init) == str: # noqa: E721
|
478 |
+
bias_init = get_weight_init_by_string(bias_init)
|
479 |
+
|
480 |
+
if type(activation) is str:
|
481 |
+
activation = str2act(activation)
|
482 |
+
|
483 |
+
self.n_atom_basis = self.hidden_dim = hidden_channels
|
484 |
+
self.n_interactions = num_layers
|
485 |
+
self.cutoff = cutoff
|
486 |
+
|
487 |
+
self.neighbor_embedding = NodeInit(
|
488 |
+
[self.hidden_dim // 2, self.hidden_dim],
|
489 |
+
n_rbf,
|
490 |
+
self.cutoff,
|
491 |
+
max_z=max_z,
|
492 |
+
weight_init=weight_init,
|
493 |
+
bias_init=bias_init,
|
494 |
+
concat=False,
|
495 |
+
proj_ln="layer",
|
496 |
+
activation=activation,
|
497 |
+
)
|
498 |
+
self.edge_embedding = EdgeInit(
|
499 |
+
n_rbf, [self.hidden_dim // 2, self.hidden_dim], weight_init=weight_init, bias_init=bias_init, proj_ln=""
|
500 |
+
)
|
501 |
+
|
502 |
+
radial_basis = str2basis(radial_basis)
|
503 |
+
self.radial_basis = radial_basis(cutoff=self.cutoff, n_rbf=n_rbf)
|
504 |
+
|
505 |
+
self.embedding = nn.Embedding(max_z, self.n_atom_basis, padding_idx=0)
|
506 |
+
|
507 |
+
self.tensor_init = TensorInit(l=lmax)
|
508 |
+
|
509 |
+
self.gata = nn.ModuleList(
|
510 |
+
[
|
511 |
+
GATA(
|
512 |
+
n_atom_basis=self.n_atom_basis,
|
513 |
+
activation=activation,
|
514 |
+
aggr=aggr,
|
515 |
+
weight_init=weight_init,
|
516 |
+
bias_init=bias_init,
|
517 |
+
layer_norm=int_layer_norm,
|
518 |
+
vector_norm=int_vector_norm,
|
519 |
+
cutoff=self.cutoff,
|
520 |
+
epsilon=epsilon,
|
521 |
+
num_heads=num_heads,
|
522 |
+
dropout=attn_dropout,
|
523 |
+
edge_updates=edge_updates,
|
524 |
+
last_layer=(i == self.n_interactions - 1),
|
525 |
+
scale_edge=scale_edge,
|
526 |
+
edge_ln=edge_ln,
|
527 |
+
evec_dim=evec_dim,
|
528 |
+
emlp_dim=emlp_dim,
|
529 |
+
sep_vecj=sep_int_vec,
|
530 |
+
lmax=lmax,
|
531 |
+
)
|
532 |
+
for i in range(self.n_interactions)
|
533 |
+
]
|
534 |
+
)
|
535 |
+
|
536 |
+
self.eqff = nn.ModuleList(
|
537 |
+
[
|
538 |
+
EQFF(n_atom_basis=self.n_atom_basis, activation=activation, epsilon=epsilon, weight_init=weight_init, bias_init=bias_init)
|
539 |
+
for i in range(self.n_interactions)
|
540 |
+
]
|
541 |
+
)
|
542 |
+
|
543 |
+
# Extra layer norms for the scalar quantities
|
544 |
+
if before_mixing_layer_norm:
|
545 |
+
self.before_mixing_ln = nn.LayerNorm(self.n_atom_basis)
|
546 |
+
else:
|
547 |
+
self.before_mixing_ln = nn.Identity()
|
548 |
+
|
549 |
+
if after_mixing_layer_norm:
|
550 |
+
self.after_mixing_ln = nn.LayerNorm(self.n_atom_basis)
|
551 |
+
else:
|
552 |
+
self.after_mixing_ln = nn.Identity()
|
553 |
+
|
554 |
+
self.reset_parameters()
|
555 |
+
|
556 |
+
def reset_parameters(self):
|
557 |
+
self.edge_embedding.reset_parameters()
|
558 |
+
self.neighbor_embedding.reset_parameters()
|
559 |
+
for l in self.gata: # noqa: E741
|
560 |
+
l.reset_parameters()
|
561 |
+
for l in self.eqff: # noqa: E741
|
562 |
+
l.reset_parameters()
|
563 |
+
|
564 |
+
if not isinstance(self.before_mixing_ln, nn.Identity):
|
565 |
+
self.before_mixing_ln.reset_parameters()
|
566 |
+
if not isinstance(self.after_mixing_ln, nn.Identity):
|
567 |
+
self.after_mixing_ln.reset_parameters()
|
568 |
+
|
569 |
+
def forward(self, z, pos, cutoff_edge_index, cutoff_edge_distance, cutoff_edge_vec):
|
570 |
+
q = self.embedding(z)[:]
|
571 |
+
|
572 |
+
edge_attr = self.radial_basis(cutoff_edge_distance)
|
573 |
+
|
574 |
+
q = self.neighbor_embedding(z, q, cutoff_edge_index, cutoff_edge_distance, edge_attr)
|
575 |
+
edge_attr = self.edge_embedding(cutoff_edge_index, edge_attr, q)
|
576 |
+
mask = cutoff_edge_index[0] != cutoff_edge_index[1]
|
577 |
+
# direction vector
|
578 |
+
dist = torch.norm(cutoff_edge_vec[mask], dim=1).unsqueeze(1)
|
579 |
+
cutoff_edge_vec[mask] = cutoff_edge_vec[mask] / dist
|
580 |
+
|
581 |
+
cutoff_edge_vec = self.tensor_init(cutoff_edge_vec)
|
582 |
+
equi_dim = ((self.tensor_init.l + 1) ** 2) - 1
|
583 |
+
# count number of edges for each node
|
584 |
+
num_edges = scatter(torch.ones_like(cutoff_edge_distance), cutoff_edge_index[0], dim=0, reduce="sum")
|
585 |
+
# the shape of num edges is [num_nodes, 1], we want to expand this to [num_edges, 1]
|
586 |
+
# Map num_edges back to the shape of attn using cutoff_edge_index
|
587 |
+
num_edges_expanded = num_edges[cutoff_edge_index[0]]
|
588 |
+
|
589 |
+
qs = q.shape
|
590 |
+
mu = torch.zeros((qs[0], equi_dim, qs[1]), device=q.device)
|
591 |
+
q.unsqueeze_(1)
|
592 |
+
|
593 |
+
layer_outputs = []
|
594 |
+
|
595 |
+
for i, (interaction, mixing) in enumerate(zip(self.gata, self.eqff)):
|
596 |
+
q, mu, edge_attr = interaction(
|
597 |
+
cutoff_edge_index,
|
598 |
+
q,
|
599 |
+
mu,
|
600 |
+
dir_ij=cutoff_edge_vec,
|
601 |
+
r_ij=edge_attr,
|
602 |
+
d_ij=cutoff_edge_distance,
|
603 |
+
num_edges_expanded=num_edges_expanded,
|
604 |
+
)
|
605 |
+
|
606 |
+
q = self.before_mixing_ln(q)
|
607 |
+
q, mu = mixing(q, mu)
|
608 |
+
q = self.after_mixing_ln(q)
|
609 |
+
|
610 |
+
# Collect all scalars for inter-layer read-outs
|
611 |
+
layer_outputs.append(q.squeeze(1))
|
612 |
+
|
613 |
+
# q = q.squeeze(1)
|
614 |
+
|
615 |
+
layer_outputs = torch.stack(layer_outputs, dim=-1)
|
616 |
+
|
617 |
+
output_dict = {}
|
618 |
+
output_dict["embedding_0"] = layer_outputs.unsqueeze(2) # [n_nodes, n_features, dimension of irrep, n_layers]
|
619 |
+
# This is a scalar so a single irrep
|
620 |
+
|
621 |
+
return output_dict
|
models/pos_egnn/posegnn/model.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch import nn
|
2 |
+
import torch
|
3 |
+
from .encoder import GotenNet
|
4 |
+
from .utils import get_symmetric_displacement, BatchedPeriodicDistance, ACT_CLASS_MAPPING
|
5 |
+
#from torch_scatter import scatter
|
6 |
+
|
7 |
+
class NodeInvariantReadout(nn.Module):
|
8 |
+
def __init__(self, in_channels, num_residues, hidden_channels, out_channels, activation):
|
9 |
+
super().__init__()
|
10 |
+
|
11 |
+
self.linears = nn.ModuleList([nn.Linear(in_channels, out_channels) for _ in range(num_residues - 1)])
|
12 |
+
|
13 |
+
# Define the nonlinear layer for the last layer's output
|
14 |
+
self.non_linear = nn.Sequential(
|
15 |
+
nn.Linear(in_channels, hidden_channels),
|
16 |
+
ACT_CLASS_MAPPING[activation](),
|
17 |
+
nn.Linear(hidden_channels, out_channels),
|
18 |
+
)
|
19 |
+
|
20 |
+
def forward(self, embedding_0):
|
21 |
+
layer_outputs = embedding_0.squeeze(2) # [n_nodes, in_channels, num_residues]
|
22 |
+
|
23 |
+
processed_outputs = []
|
24 |
+
for i, linear in enumerate(self.linears):
|
25 |
+
processed_outputs.append(linear(layer_outputs[:, :, i]))
|
26 |
+
|
27 |
+
processed_outputs.append(self.non_linear(layer_outputs[:, :, -1]))
|
28 |
+
output = torch.stack(processed_outputs, dim=0).sum(dim=0).squeeze(-1)
|
29 |
+
return output
|
30 |
+
|
31 |
+
class PosEGNN(nn.Module):
|
32 |
+
def __init__(self, config):
|
33 |
+
super().__init__()
|
34 |
+
|
35 |
+
self.distance = BatchedPeriodicDistance(config["encoder"]["cutoff"])
|
36 |
+
self.encoder = GotenNet(**config["encoder"])
|
37 |
+
self.readout = NodeInvariantReadout(**config["decoder"])
|
38 |
+
self.register_buffer("e0_mean", torch.tensor(config["e0_mean"]))
|
39 |
+
self.register_buffer("atomic_res_total_mean", torch.tensor(config["atomic_res_total_mean"]))
|
40 |
+
self.register_buffer("atomic_res_total_std", torch.tensor(config["atomic_res_total_std"]))
|
41 |
+
|
42 |
+
def forward(self, data):
|
43 |
+
data.pos.requires_grad_(True)
|
44 |
+
|
45 |
+
data.pos, data.box, data.displacements = get_symmetric_displacement(data.pos, data.box, data.num_graphs, data.batch)
|
46 |
+
|
47 |
+
data.cutoff_edge_index, data.cutoff_edge_distance, data.cutoff_edge_vec, data.cutoff_shifts_idx = self.distance(
|
48 |
+
data.pos, data.box, data.batch
|
49 |
+
)
|
50 |
+
|
51 |
+
embedding_dict = self.encoder(data.z, data.pos, data.cutoff_edge_index, data.cutoff_edge_distance, data.cutoff_edge_vec)
|
52 |
+
|
53 |
+
return embedding_dict
|
54 |
+
|
55 |
+
def compute_properties(self, data, compute_stress = True):
|
56 |
+
output = {}
|
57 |
+
|
58 |
+
embedding_dict = self.forward(data)
|
59 |
+
embedding_0 = embedding_dict["embedding_0"]
|
60 |
+
|
61 |
+
# Compute energy
|
62 |
+
node_e_res = self.readout(embedding_0)
|
63 |
+
|
64 |
+
node_e_res = node_e_res * self.atomic_res_total_std + self.atomic_res_total_mean
|
65 |
+
total_e_res = scatter(src=node_e_res, index=data["batch"], dim=0, reduce="sum")
|
66 |
+
|
67 |
+
node_e0 = self.e0_mean[data.z]
|
68 |
+
total_e0 = scatter(src=node_e0, index=data["batch"], dim=0, reduce="sum")
|
69 |
+
|
70 |
+
total_energy = total_e0 + total_e_res
|
71 |
+
output["total_energy"] = total_energy
|
72 |
+
|
73 |
+
# Compute gradients
|
74 |
+
if compute_stress:
|
75 |
+
inputs = [data.pos, data.displacements]
|
76 |
+
compute_stress = True
|
77 |
+
else:
|
78 |
+
inputs = [data.pos]
|
79 |
+
|
80 |
+
grad_outputs = torch.autograd.grad(
|
81 |
+
outputs=[total_energy],
|
82 |
+
inputs=inputs,
|
83 |
+
grad_outputs=[torch.ones_like(total_energy)],
|
84 |
+
retain_graph=self.training,
|
85 |
+
create_graph=self.training,
|
86 |
+
)
|
87 |
+
|
88 |
+
# Get forces and stresses
|
89 |
+
if compute_stress:
|
90 |
+
force, virial = grad_outputs
|
91 |
+
stress = virial / torch.det(data.box).abs().view(-1, 1, 1)
|
92 |
+
stress = torch.where(torch.abs(stress) < 1e10, stress, torch.zeros_like(stress))
|
93 |
+
output["force"] = -force
|
94 |
+
output["stress"] = -stress
|
95 |
+
else:
|
96 |
+
force = grad_outputs[0]
|
97 |
+
output["force"] = -force
|
98 |
+
|
99 |
+
return output
|
models/pos_egnn/posegnn/ops.py
ADDED
@@ -0,0 +1,1584 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This code was adapted from https://github.com/sarpaykent/GotenNet
|
3 |
+
Copyright (c) 2025 Sarp Aykent
|
4 |
+
MIT License
|
5 |
+
|
6 |
+
GotenNet: Rethinking Efficient 3D Equivariant Graph Neural Networks
|
7 |
+
Sarp Aykent and Tian Xia
|
8 |
+
https://openreview.net/pdf?id=5wxCQDtbMo
|
9 |
+
"""
|
10 |
+
|
11 |
+
from __future__ import absolute_import, division, print_function
|
12 |
+
|
13 |
+
import inspect
|
14 |
+
import math
|
15 |
+
from functools import partial
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
from torch import Tensor
|
21 |
+
from torch import nn as nn
|
22 |
+
from torch.nn.init import constant_, xavier_uniform_
|
23 |
+
from torch_geometric.nn import MessagePassing
|
24 |
+
from torch_geometric.nn.inits import glorot_orthogonal
|
25 |
+
from torch_geometric.nn.models.schnet import ShiftedSoftplus
|
26 |
+
#from torch_scatter import scatter
|
27 |
+
|
28 |
+
zeros_initializer = partial(constant_, val=0.0)
|
29 |
+
|
30 |
+
|
31 |
+
def centralize(
|
32 |
+
batch,
|
33 |
+
key: str,
|
34 |
+
batch_index: torch.Tensor,
|
35 |
+
): # note: cannot make assumptions on output shape
|
36 |
+
# derive centroid of each batch element, and center entities using corresponding centroids
|
37 |
+
entities_centroid = scatter(batch[key], batch_index, dim=0, reduce="mean") # e.g., [batch_size, 3]
|
38 |
+
entities_centered = batch[key] - entities_centroid[batch_index]
|
39 |
+
|
40 |
+
return entities_centroid, entities_centered
|
41 |
+
|
42 |
+
|
43 |
+
def decentralize(
|
44 |
+
positions: torch.Tensor,
|
45 |
+
batch_index: torch.Tensor,
|
46 |
+
entities_centroid: torch.Tensor,
|
47 |
+
) -> torch.Tensor: # note: cannot make assumptions on output shape
|
48 |
+
entities_centered = positions + entities_centroid[batch_index]
|
49 |
+
return entities_centered
|
50 |
+
|
51 |
+
|
52 |
+
def parse_update_info(edge_updates):
|
53 |
+
update_info = {
|
54 |
+
"gated": False,
|
55 |
+
"rej": True,
|
56 |
+
"vec_norm": False,
|
57 |
+
"mlp": False,
|
58 |
+
"mlpa": False,
|
59 |
+
"lin_w": 0,
|
60 |
+
"drej": False,
|
61 |
+
}
|
62 |
+
if isinstance(edge_updates, str):
|
63 |
+
update_parts = edge_updates.split("_")
|
64 |
+
else:
|
65 |
+
update_parts = []
|
66 |
+
|
67 |
+
allowed_parts = ["gated", "gatedt", "norej", "mlp", "mlpa", "act", "linw", "linwa", "drej"]
|
68 |
+
if not all([part in allowed_parts for part in update_parts]):
|
69 |
+
raise ValueError(f"Invalid edge update parts. Allowed parts are {allowed_parts}")
|
70 |
+
|
71 |
+
if "gated" in update_parts:
|
72 |
+
update_info["gated"] = "gated"
|
73 |
+
if "gatedt" in update_parts:
|
74 |
+
update_info["gated"] = "gatedt"
|
75 |
+
if "act" in update_parts:
|
76 |
+
update_info["gated"] = "act"
|
77 |
+
if "norej" in update_parts:
|
78 |
+
update_info["rej"] = False
|
79 |
+
if "mlp" in update_parts:
|
80 |
+
update_info["mlp"] = True
|
81 |
+
if "mlpa" in update_parts:
|
82 |
+
update_info["mlpa"] = True
|
83 |
+
if "linw" in update_parts:
|
84 |
+
update_info["lin_w"] = 1
|
85 |
+
if "linwa" in update_parts:
|
86 |
+
update_info["lin_w"] = 2
|
87 |
+
if "drej" in update_parts:
|
88 |
+
update_info["drej"] = True
|
89 |
+
return update_info
|
90 |
+
|
91 |
+
|
92 |
+
class SmoothLeakyReLU(torch.nn.Module):
|
93 |
+
def __init__(self, negative_slope=0.2):
|
94 |
+
super().__init__()
|
95 |
+
self.alpha = negative_slope
|
96 |
+
|
97 |
+
def forward(self, x):
|
98 |
+
x1 = ((1 + self.alpha) / 2) * x
|
99 |
+
x2 = ((1 - self.alpha) / 2) * x * (2 * torch.sigmoid(x) - 1)
|
100 |
+
return x1 + x2
|
101 |
+
|
102 |
+
def extra_repr(self):
|
103 |
+
return "negative_slope={}".format(self.alpha)
|
104 |
+
|
105 |
+
|
106 |
+
def shifted_softplus(x: torch.Tensor):
|
107 |
+
return F.softplus(x) - math.log(2.0)
|
108 |
+
|
109 |
+
|
110 |
+
class PolynomialCutoff(nn.Module):
|
111 |
+
def __init__(self, cutoff, p: int = 6):
|
112 |
+
super(PolynomialCutoff, self).__init__()
|
113 |
+
self.cutoff = cutoff
|
114 |
+
self.p = p
|
115 |
+
|
116 |
+
@staticmethod
|
117 |
+
def polynomial_cutoff(r: Tensor, rcut: float, p: float = 6.0) -> Tensor:
|
118 |
+
"""
|
119 |
+
Polynomial cutoff, as proposed in DimeNet: https://arxiv.org/abs/2003.03123
|
120 |
+
"""
|
121 |
+
if not p >= 2.0:
|
122 |
+
# replace below with logger error
|
123 |
+
print(f"Exponent p={p} has to be >= 2.")
|
124 |
+
print("Exiting code.")
|
125 |
+
|
126 |
+
print(f"Exponent p={p} has to be >= 2.")
|
127 |
+
print("Exiting code.")
|
128 |
+
exit()
|
129 |
+
|
130 |
+
rscaled = r / rcut
|
131 |
+
|
132 |
+
out = 1.0
|
133 |
+
out = out - (((p + 1.0) * (p + 2.0) / 2.0) * torch.pow(rscaled, p))
|
134 |
+
out = out + (p * (p + 2.0) * torch.pow(rscaled, p + 1.0))
|
135 |
+
out = out - ((p * (p + 1.0) / 2) * torch.pow(rscaled, p + 2.0))
|
136 |
+
|
137 |
+
return out * (rscaled < 1.0).float()
|
138 |
+
|
139 |
+
def forward(self, r):
|
140 |
+
return self.polynomial_cutoff(r=r, rcut=self.cutoff, p=self.p)
|
141 |
+
|
142 |
+
def __repr__(self):
|
143 |
+
return f"{self.__class__.__name__}(cutoff={self.cutoff}, p={self.p})"
|
144 |
+
|
145 |
+
|
146 |
+
class CosineCutoff(nn.Module):
|
147 |
+
def __init__(self, cutoff):
|
148 |
+
super(CosineCutoff, self).__init__()
|
149 |
+
|
150 |
+
if isinstance(cutoff, torch.Tensor):
|
151 |
+
cutoff = cutoff.item()
|
152 |
+
self.cutoff = cutoff
|
153 |
+
|
154 |
+
def forward(self, distances):
|
155 |
+
cutoffs = 0.5 * (torch.cos(distances * math.pi / self.cutoff) + 1.0)
|
156 |
+
cutoffs = cutoffs * (distances < self.cutoff).float()
|
157 |
+
return cutoffs
|
158 |
+
|
159 |
+
|
160 |
+
class ScaleShift(nn.Module):
|
161 |
+
r"""Scale and shift layer for standardization.
|
162 |
+
|
163 |
+
.. math::
|
164 |
+
y = x \times \sigma + \mu
|
165 |
+
|
166 |
+
Args:
|
167 |
+
mean (torch.Tensor): mean value :math:`\mu`.
|
168 |
+
stddev (torch.Tensor): standard deviation value :math:`\sigma`.
|
169 |
+
|
170 |
+
"""
|
171 |
+
|
172 |
+
def __init__(self, mean, stddev):
|
173 |
+
super(ScaleShift, self).__init__()
|
174 |
+
if isinstance(mean, float):
|
175 |
+
mean = torch.FloatTensor([mean])
|
176 |
+
if isinstance(stddev, float):
|
177 |
+
stddev = torch.FloatTensor([stddev])
|
178 |
+
self.register_buffer("mean", mean)
|
179 |
+
self.register_buffer("stddev", stddev)
|
180 |
+
|
181 |
+
def forward(self, input):
|
182 |
+
"""Compute layer output.
|
183 |
+
|
184 |
+
Args:
|
185 |
+
input (torch.Tensor): input data.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
torch.Tensor: layer output.
|
189 |
+
|
190 |
+
"""
|
191 |
+
y = input * self.stddev + self.mean
|
192 |
+
return y
|
193 |
+
|
194 |
+
|
195 |
+
class GetItem(nn.Module):
|
196 |
+
"""Extraction layer to get an item from SchNetPack dictionary of input tensors.
|
197 |
+
Args:
|
198 |
+
key (str): Property to be extracted from SchNetPack input tensors.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(self, key):
|
202 |
+
super(GetItem, self).__init__()
|
203 |
+
self.key = key
|
204 |
+
|
205 |
+
def forward(self, inputs):
|
206 |
+
"""Compute layer output.
|
207 |
+
Args:
|
208 |
+
inputs (dict of torch.Tensor): SchNetPack dictionary of input tensors.
|
209 |
+
Returns:
|
210 |
+
torch.Tensor: layer output.
|
211 |
+
"""
|
212 |
+
return inputs[self.key]
|
213 |
+
|
214 |
+
|
215 |
+
class SchnetMLP(nn.Module):
|
216 |
+
"""Multiple layer fully connected perceptron neural network.
|
217 |
+
Args:
|
218 |
+
n_in (int): number of input nodes.
|
219 |
+
n_out (int): number of output nodes.
|
220 |
+
n_hidden (list of int or int, optional): number hidden layer nodes.
|
221 |
+
If an integer, same number of node is used for all hidden layers resulting
|
222 |
+
in a rectangular network.
|
223 |
+
If None, the number of neurons is divided by two after each layer starting
|
224 |
+
n_in resulting in a pyramidal network.
|
225 |
+
n_layers (int, optional): number of layers.
|
226 |
+
activation (callable, optional): activation function. All hidden layers would
|
227 |
+
the same activation function except the output layer that does not apply
|
228 |
+
any activation function.
|
229 |
+
"""
|
230 |
+
|
231 |
+
def __init__(self, n_in, n_out, n_hidden=None, n_layers=2, activation=shifted_softplus):
|
232 |
+
super(SchnetMLP, self).__init__()
|
233 |
+
# get list of number of nodes in input, hidden & output layers
|
234 |
+
if n_hidden is None:
|
235 |
+
c_neurons = n_in
|
236 |
+
self.n_neurons = []
|
237 |
+
for i in range(n_layers):
|
238 |
+
self.n_neurons.append(c_neurons)
|
239 |
+
c_neurons = c_neurons // 2
|
240 |
+
self.n_neurons.append(n_out)
|
241 |
+
else:
|
242 |
+
# get list of number of nodes hidden layers
|
243 |
+
if type(n_hidden) is int:
|
244 |
+
n_hidden = [n_hidden] * (n_layers - 1)
|
245 |
+
self.n_neurons = [n_in] + n_hidden + [n_out]
|
246 |
+
|
247 |
+
# assign a Dense layer (with activation function) to each hidden layer
|
248 |
+
layers = [Dense(self.n_neurons[i], self.n_neurons[i + 1], activation=activation) for i in range(n_layers - 1)]
|
249 |
+
# assign a Dense layer (without activation function) to the output layer
|
250 |
+
layers.append(Dense(self.n_neurons[-2], self.n_neurons[-1], activation=None))
|
251 |
+
# put all layers together to make the network
|
252 |
+
self.out_net = nn.Sequential(*layers)
|
253 |
+
|
254 |
+
def forward(self, inputs):
|
255 |
+
"""Compute neural network output.
|
256 |
+
Args:
|
257 |
+
inputs (torch.Tensor): network input.
|
258 |
+
Returns:
|
259 |
+
torch.Tensor: network output.
|
260 |
+
"""
|
261 |
+
return self.out_net(inputs)
|
262 |
+
|
263 |
+
|
264 |
+
def scaled_silu(x, scale=0.6):
|
265 |
+
return F.silu(x) * scale
|
266 |
+
|
267 |
+
|
268 |
+
def gaussian_rbf(inputs: torch.Tensor, offsets: torch.Tensor, widths: torch.Tensor):
|
269 |
+
coeff = -0.5 / torch.pow(widths, 2)
|
270 |
+
diff = inputs[..., None] - offsets
|
271 |
+
y = torch.exp(coeff * torch.pow(diff, 2))
|
272 |
+
return y
|
273 |
+
|
274 |
+
|
275 |
+
class GaussianRBF(nn.Module):
|
276 |
+
r"""Gaussian radial basis functions."""
|
277 |
+
|
278 |
+
def __init__(self, n_rbf: int, cutoff: float, start: float = 0.0, trainable: bool = False):
|
279 |
+
"""
|
280 |
+
Args:
|
281 |
+
n_rbf: total number of Gaussian functions, :math:`N_g`.
|
282 |
+
cutoff: center of last Gaussian function, :math:`\mu_{N_g}`
|
283 |
+
start: center of first Gaussian function, :math:`\mu_0`.
|
284 |
+
trainable: If True, widths and offset of Gaussian functions
|
285 |
+
are adjusted during training process.
|
286 |
+
"""
|
287 |
+
super(GaussianRBF, self).__init__()
|
288 |
+
self.n_rbf = n_rbf
|
289 |
+
|
290 |
+
# compute offset and width of Gaussian functions
|
291 |
+
offset = torch.linspace(start, cutoff, n_rbf)
|
292 |
+
widths = torch.FloatTensor(torch.abs(offset[1] - offset[0]) * torch.ones_like(offset))
|
293 |
+
if trainable:
|
294 |
+
self.widths = nn.Parameter(widths)
|
295 |
+
self.offsets = nn.Parameter(offset)
|
296 |
+
else:
|
297 |
+
self.register_buffer("widths", widths)
|
298 |
+
self.register_buffer("offsets", offset)
|
299 |
+
|
300 |
+
def forward(self, inputs: torch.Tensor):
|
301 |
+
return gaussian_rbf(inputs, self.offsets, self.widths)
|
302 |
+
|
303 |
+
|
304 |
+
class BesselBasis(nn.Module):
|
305 |
+
"""
|
306 |
+
Sine for radial basis expansion with coulomb decay. (0th order Bessel from DimeNet)
|
307 |
+
"""
|
308 |
+
|
309 |
+
def __init__(self, cutoff=5.0, n_rbf=None, trainable=False):
|
310 |
+
"""
|
311 |
+
Args:
|
312 |
+
cutoff: radial cutoff
|
313 |
+
n_rbf: number of basis functions.
|
314 |
+
"""
|
315 |
+
super(BesselBasis, self).__init__()
|
316 |
+
self.n_rbf = n_rbf
|
317 |
+
# compute offset and width of Gaussian functions
|
318 |
+
freqs = torch.arange(1, n_rbf + 1) * math.pi / cutoff
|
319 |
+
self.register_buffer("freqs", freqs)
|
320 |
+
self.register_buffer("norm1", torch.tensor(1.0))
|
321 |
+
|
322 |
+
def forward(self, inputs):
|
323 |
+
input_size = len(inputs.shape) # noqa: F841
|
324 |
+
a = self.freqs[None, :]
|
325 |
+
inputs = inputs[..., None]
|
326 |
+
ax = inputs * a
|
327 |
+
sinax = torch.sin(ax)
|
328 |
+
|
329 |
+
norm = torch.where(inputs == 0, self.norm1, inputs)
|
330 |
+
y = sinax / norm
|
331 |
+
|
332 |
+
return y
|
333 |
+
|
334 |
+
|
335 |
+
def glorot_orthogonal_wrapper_(tensor, scale=2.0):
|
336 |
+
return glorot_orthogonal(tensor, scale=scale)
|
337 |
+
|
338 |
+
|
339 |
+
def _standardize(kernel):
|
340 |
+
"""
|
341 |
+
Makes sure that Var(W) = 1 and E[W] = 0
|
342 |
+
"""
|
343 |
+
eps = 1e-6
|
344 |
+
|
345 |
+
if len(kernel.shape) == 3:
|
346 |
+
axis = [0, 1] # last dimension is output dimension
|
347 |
+
else:
|
348 |
+
axis = 1
|
349 |
+
|
350 |
+
var, mean = torch.var_mean(kernel, dim=axis, unbiased=True, keepdim=True)
|
351 |
+
kernel = (kernel - mean) / (var + eps) ** 0.5
|
352 |
+
return kernel
|
353 |
+
|
354 |
+
|
355 |
+
def he_orthogonal_init(tensor):
|
356 |
+
"""
|
357 |
+
Generate a weight matrix with variance according to He initialization.
|
358 |
+
Based on a random (semi-)orthogonal matrix neural networks
|
359 |
+
are expected to learn better when features are decorrelated
|
360 |
+
(stated by eg. "Reducing overfitting in deep networks by decorrelating representations",
|
361 |
+
"Dropout: a simple way to prevent neural networks from overfitting",
|
362 |
+
"Exact solutions to the nonlinear dynamics of learning in deep linear neural networks")
|
363 |
+
"""
|
364 |
+
tensor = torch.nn.init.orthogonal_(tensor)
|
365 |
+
|
366 |
+
if len(tensor.shape) == 3:
|
367 |
+
fan_in = tensor.shape[:-1].numel()
|
368 |
+
else:
|
369 |
+
fan_in = tensor.shape[1]
|
370 |
+
|
371 |
+
with torch.no_grad():
|
372 |
+
tensor.data = _standardize(tensor.data)
|
373 |
+
tensor.data *= (1 / fan_in) ** 0.5
|
374 |
+
|
375 |
+
return tensor
|
376 |
+
|
377 |
+
|
378 |
+
def get_weight_init_by_string(init_str):
|
379 |
+
if init_str == "":
|
380 |
+
# Noop
|
381 |
+
return lambda x: x
|
382 |
+
elif init_str == "zeros":
|
383 |
+
return torch.nn.init.zeros_
|
384 |
+
elif init_str == "xavier_uniform":
|
385 |
+
return torch.nn.init.xavier_uniform_
|
386 |
+
elif init_str == "glo_orthogonal":
|
387 |
+
return glorot_orthogonal_wrapper_
|
388 |
+
elif init_str == "he_orthogonal":
|
389 |
+
return he_orthogonal_init
|
390 |
+
else:
|
391 |
+
raise ValueError(f"Unknown initialization {init_str}")
|
392 |
+
|
393 |
+
|
394 |
+
class Dense(nn.Linear):
|
395 |
+
r"""Fully connected linear layer with activation function.
|
396 |
+
Barrowed from https://github.com/atomistic-machine-learning/schnetpack/blob/master/src/schnetpack/nn/base.py
|
397 |
+
|
398 |
+
.. math::
|
399 |
+
y = activation(xW^T + b)
|
400 |
+
|
401 |
+
Args:
|
402 |
+
in_features (int): number of input feature :math:`x`.
|
403 |
+
out_features (int): number of output features :math:`y`.
|
404 |
+
bias (bool, optional): if False, the layer will not adapt bias :math:`b`.
|
405 |
+
activation (callable, optional): if None, no activation function is used.
|
406 |
+
weight_init (callable, optional): weight initializer from current weight.
|
407 |
+
bias_init (callable, optional): bias initializer from current bias.
|
408 |
+
|
409 |
+
"""
|
410 |
+
|
411 |
+
def __init__(
|
412 |
+
self,
|
413 |
+
in_features,
|
414 |
+
out_features,
|
415 |
+
bias=True,
|
416 |
+
activation=None,
|
417 |
+
weight_init=xavier_uniform_,
|
418 |
+
bias_init=zeros_initializer,
|
419 |
+
norm=None,
|
420 |
+
gain=None,
|
421 |
+
):
|
422 |
+
# initialize linear layer y = xW^T + b
|
423 |
+
self.weight_init = weight_init
|
424 |
+
self.bias_init = bias_init
|
425 |
+
self.gain = gain
|
426 |
+
super(Dense, self).__init__(in_features, out_features, bias)
|
427 |
+
# Initialize activation function
|
428 |
+
if inspect.isclass(activation):
|
429 |
+
self.activation = activation()
|
430 |
+
self.activation = activation
|
431 |
+
|
432 |
+
if norm == "layer":
|
433 |
+
self.norm = nn.LayerNorm(out_features)
|
434 |
+
elif norm == "batch":
|
435 |
+
self.norm = nn.BatchNorm1d(out_features)
|
436 |
+
elif norm == "instance":
|
437 |
+
self.norm = nn.InstanceNorm1d(out_features)
|
438 |
+
else:
|
439 |
+
self.norm = None
|
440 |
+
|
441 |
+
def reset_parameters(self):
|
442 |
+
"""Reinitialize model weight and bias values."""
|
443 |
+
if self.gain:
|
444 |
+
self.weight_init(self.weight, gain=self.gain)
|
445 |
+
else:
|
446 |
+
self.weight_init(self.weight)
|
447 |
+
if self.bias is not None:
|
448 |
+
self.bias_init(self.bias)
|
449 |
+
|
450 |
+
def forward(self, inputs):
|
451 |
+
"""Compute layer output.
|
452 |
+
|
453 |
+
Args:
|
454 |
+
inputs (dict of torch.Tensor): batch of input values.
|
455 |
+
|
456 |
+
Returns:
|
457 |
+
torch.Tensor: layer output.
|
458 |
+
|
459 |
+
"""
|
460 |
+
# compute linear layer y = xW^T + b
|
461 |
+
y = super(Dense, self).forward(inputs)
|
462 |
+
if self.norm is not None:
|
463 |
+
y = self.norm(y)
|
464 |
+
# add activation function
|
465 |
+
if self.activation:
|
466 |
+
y = self.activation(y)
|
467 |
+
return y
|
468 |
+
|
469 |
+
|
470 |
+
class _VDropout(nn.Module):
|
471 |
+
"""
|
472 |
+
Vector channel dropout where the elements of each
|
473 |
+
vector channel are dropped together.
|
474 |
+
"""
|
475 |
+
|
476 |
+
def __init__(self, drop_rate, scale=True):
|
477 |
+
super(_VDropout, self).__init__()
|
478 |
+
self.drop_rate = drop_rate
|
479 |
+
self.scale = scale
|
480 |
+
|
481 |
+
def forward(self, x, dim=-1):
|
482 |
+
"""
|
483 |
+
:param x: `torch.Tensor` corresponding to vector channels
|
484 |
+
"""
|
485 |
+
if self.drop_rate == 0:
|
486 |
+
return x
|
487 |
+
device = x.device
|
488 |
+
if not self.training:
|
489 |
+
return x
|
490 |
+
|
491 |
+
shape = list(x.shape)
|
492 |
+
assert shape[dim] == 3, "The dimension must be vector"
|
493 |
+
shape[dim] = 1
|
494 |
+
|
495 |
+
mask = torch.bernoulli((1 - self.drop_rate) * torch.ones(shape, device=device))
|
496 |
+
x = mask * x
|
497 |
+
if self.scale:
|
498 |
+
# scale the output to keep the expected output distribution
|
499 |
+
# same as input distribution. However, this might be harmfuk
|
500 |
+
# for vector space.
|
501 |
+
x = x / (1 - self.drop_rate)
|
502 |
+
|
503 |
+
return x
|
504 |
+
|
505 |
+
|
506 |
+
class Dropout(nn.Module):
|
507 |
+
"""
|
508 |
+
Combined dropout for tuples (s, V).
|
509 |
+
Takes tuples (s, V) as input and as output.
|
510 |
+
"""
|
511 |
+
|
512 |
+
def __init__(self, drop_rate, vector_dropout=True):
|
513 |
+
super(Dropout, self).__init__()
|
514 |
+
self.sdropout = nn.Dropout(drop_rate)
|
515 |
+
if vector_dropout:
|
516 |
+
self.vdropout = _VDropout(drop_rate)
|
517 |
+
else:
|
518 |
+
self.vdropout = lambda x, dim: x
|
519 |
+
|
520 |
+
def forward(self, x):
|
521 |
+
"""
|
522 |
+
:param x: tuple (s, V) of `torch.Tensor`,
|
523 |
+
or single `torch.Tensor`
|
524 |
+
(will be assumed to be scalar channels)
|
525 |
+
"""
|
526 |
+
if type(x) is torch.Tensor:
|
527 |
+
return self.sdropout(x)
|
528 |
+
s, v = x
|
529 |
+
return self.sdropout(s), self.vdropout(v, dim=1)
|
530 |
+
|
531 |
+
|
532 |
+
class TensorInit(nn.Module):
|
533 |
+
def __init__(self, l=2): # noqa: E741
|
534 |
+
super(TensorInit, self).__init__()
|
535 |
+
self.l = l
|
536 |
+
|
537 |
+
def forward(self, edge_vec):
|
538 |
+
edge_sh = self._calculate_components(self.l, edge_vec[..., 0], edge_vec[..., 1], edge_vec[..., 2])
|
539 |
+
return edge_sh
|
540 |
+
|
541 |
+
@property
|
542 |
+
def tensor_size(self):
|
543 |
+
return ((self.l + 1) ** 2) - 1
|
544 |
+
|
545 |
+
@staticmethod
|
546 |
+
def _calculate_components(lmax: int, x: torch.Tensor, y: torch.Tensor, z: torch.Tensor) -> torch.Tensor:
|
547 |
+
sh_1_0, sh_1_1, sh_1_2 = x, y, z
|
548 |
+
|
549 |
+
if lmax == 1:
|
550 |
+
return torch.stack([sh_1_0, sh_1_1, sh_1_2], dim=-1)
|
551 |
+
|
552 |
+
# (x^2, y^2, z^2) ^2
|
553 |
+
|
554 |
+
sh_2_0 = math.sqrt(3.0) * x * z
|
555 |
+
sh_2_1 = math.sqrt(3.0) * x * y
|
556 |
+
y2 = y.pow(2)
|
557 |
+
x2z2 = x.pow(2) + z.pow(2)
|
558 |
+
sh_2_2 = y2 - 0.5 * x2z2
|
559 |
+
sh_2_3 = math.sqrt(3.0) * y * z
|
560 |
+
sh_2_4 = math.sqrt(3.0) / 2.0 * (z.pow(2) - x.pow(2))
|
561 |
+
|
562 |
+
if lmax == 2:
|
563 |
+
return torch.stack([sh_1_0, sh_1_1, sh_1_2, sh_2_0, sh_2_1, sh_2_2, sh_2_3, sh_2_4], dim=-1)
|
564 |
+
|
565 |
+
# Borrowed from e3nn: https://github.com/e3nn/e3nn/blob/main/e3nn/o3/_spherical_harmonics.py#L188
|
566 |
+
sh_3_0 = (1 / 6) * math.sqrt(42) * (sh_2_0 * z + sh_2_4 * x)
|
567 |
+
sh_3_1 = math.sqrt(7) * sh_2_0 * y
|
568 |
+
sh_3_2 = (1 / 8) * math.sqrt(168) * (4.0 * y2 - x2z2) * x
|
569 |
+
sh_3_3 = (1 / 2) * math.sqrt(7) * y * (2.0 * y2 - 3.0 * x2z2)
|
570 |
+
sh_3_4 = (1 / 8) * math.sqrt(168) * z * (4.0 * y2 - x2z2)
|
571 |
+
sh_3_5 = math.sqrt(7) * sh_2_4 * y
|
572 |
+
sh_3_6 = (1 / 6) * math.sqrt(42) * (sh_2_4 * z - sh_2_0 * x)
|
573 |
+
|
574 |
+
if lmax == 3:
|
575 |
+
return torch.stack(
|
576 |
+
[
|
577 |
+
sh_1_0,
|
578 |
+
sh_1_1,
|
579 |
+
sh_1_2,
|
580 |
+
sh_2_0,
|
581 |
+
sh_2_1,
|
582 |
+
sh_2_2,
|
583 |
+
sh_2_3,
|
584 |
+
sh_2_4,
|
585 |
+
sh_3_0,
|
586 |
+
sh_3_1,
|
587 |
+
sh_3_2,
|
588 |
+
sh_3_3,
|
589 |
+
sh_3_4,
|
590 |
+
sh_3_5,
|
591 |
+
sh_3_6,
|
592 |
+
],
|
593 |
+
dim=-1,
|
594 |
+
)
|
595 |
+
|
596 |
+
sh_4_0 = (3 / 4) * math.sqrt(2) * (sh_3_0 * z + sh_3_6 * x)
|
597 |
+
sh_4_1 = (3 / 4) * sh_3_0 * y + (3 / 8) * math.sqrt(6) * sh_3_1 * z + (3 / 8) * math.sqrt(6) * sh_3_5 * x
|
598 |
+
sh_4_2 = (
|
599 |
+
-3 / 56 * math.sqrt(14) * sh_3_0 * z
|
600 |
+
+ (3 / 14) * math.sqrt(21) * sh_3_1 * y
|
601 |
+
+ (3 / 56) * math.sqrt(210) * sh_3_2 * z
|
602 |
+
+ (3 / 56) * math.sqrt(210) * sh_3_4 * x
|
603 |
+
+ (3 / 56) * math.sqrt(14) * sh_3_6 * x
|
604 |
+
)
|
605 |
+
sh_4_3 = (
|
606 |
+
-3 / 56 * math.sqrt(42) * sh_3_1 * z
|
607 |
+
+ (3 / 28) * math.sqrt(105) * sh_3_2 * y
|
608 |
+
+ (3 / 28) * math.sqrt(70) * sh_3_3 * x
|
609 |
+
+ (3 / 56) * math.sqrt(42) * sh_3_5 * x
|
610 |
+
)
|
611 |
+
sh_4_4 = -3 / 28 * math.sqrt(42) * sh_3_2 * x + (3 / 7) * math.sqrt(7) * sh_3_3 * y - 3 / 28 * math.sqrt(42) * sh_3_4 * z
|
612 |
+
sh_4_5 = (
|
613 |
+
-3 / 56 * math.sqrt(42) * sh_3_1 * x
|
614 |
+
+ (3 / 28) * math.sqrt(70) * sh_3_3 * z
|
615 |
+
+ (3 / 28) * math.sqrt(105) * sh_3_4 * y
|
616 |
+
- 3 / 56 * math.sqrt(42) * sh_3_5 * z
|
617 |
+
)
|
618 |
+
sh_4_6 = (
|
619 |
+
-3 / 56 * math.sqrt(14) * sh_3_0 * x
|
620 |
+
- 3 / 56 * math.sqrt(210) * sh_3_2 * x
|
621 |
+
+ (3 / 56) * math.sqrt(210) * sh_3_4 * z
|
622 |
+
+ (3 / 14) * math.sqrt(21) * sh_3_5 * y
|
623 |
+
- 3 / 56 * math.sqrt(14) * sh_3_6 * z
|
624 |
+
)
|
625 |
+
sh_4_7 = -3 / 8 * math.sqrt(6) * sh_3_1 * x + (3 / 8) * math.sqrt(6) * sh_3_5 * z + (3 / 4) * sh_3_6 * y
|
626 |
+
sh_4_8 = (3 / 4) * math.sqrt(2) * (-sh_3_0 * x + sh_3_6 * z)
|
627 |
+
if lmax == 4:
|
628 |
+
return torch.stack(
|
629 |
+
[
|
630 |
+
sh_1_0,
|
631 |
+
sh_1_1,
|
632 |
+
sh_1_2,
|
633 |
+
sh_2_0,
|
634 |
+
sh_2_1,
|
635 |
+
sh_2_2,
|
636 |
+
sh_2_3,
|
637 |
+
sh_2_4,
|
638 |
+
sh_3_0,
|
639 |
+
sh_3_1,
|
640 |
+
sh_3_2,
|
641 |
+
sh_3_3,
|
642 |
+
sh_3_4,
|
643 |
+
sh_3_5,
|
644 |
+
sh_3_6,
|
645 |
+
sh_4_0,
|
646 |
+
sh_4_1,
|
647 |
+
sh_4_2,
|
648 |
+
sh_4_3,
|
649 |
+
sh_4_4,
|
650 |
+
sh_4_5,
|
651 |
+
sh_4_6,
|
652 |
+
sh_4_7,
|
653 |
+
sh_4_8,
|
654 |
+
],
|
655 |
+
dim=-1,
|
656 |
+
)
|
657 |
+
|
658 |
+
sh_5_0 = (1 / 10) * math.sqrt(110) * (sh_4_0 * z + sh_4_8 * x)
|
659 |
+
sh_5_1 = (1 / 5) * math.sqrt(11) * sh_4_0 * y + (1 / 5) * math.sqrt(22) * sh_4_1 * z + (1 / 5) * math.sqrt(22) * sh_4_7 * x
|
660 |
+
sh_5_2 = (
|
661 |
+
-1 / 30 * math.sqrt(22) * sh_4_0 * z
|
662 |
+
+ (4 / 15) * math.sqrt(11) * sh_4_1 * y
|
663 |
+
+ (1 / 15) * math.sqrt(154) * sh_4_2 * z
|
664 |
+
+ (1 / 15) * math.sqrt(154) * sh_4_6 * x
|
665 |
+
+ (1 / 30) * math.sqrt(22) * sh_4_8 * x
|
666 |
+
)
|
667 |
+
sh_5_3 = (
|
668 |
+
-1 / 30 * math.sqrt(66) * sh_4_1 * z
|
669 |
+
+ (1 / 15) * math.sqrt(231) * sh_4_2 * y
|
670 |
+
+ (1 / 30) * math.sqrt(462) * sh_4_3 * z
|
671 |
+
+ (1 / 30) * math.sqrt(462) * sh_4_5 * x
|
672 |
+
+ (1 / 30) * math.sqrt(66) * sh_4_7 * x
|
673 |
+
)
|
674 |
+
sh_5_4 = (
|
675 |
+
-1 / 15 * math.sqrt(33) * sh_4_2 * z
|
676 |
+
+ (2 / 15) * math.sqrt(66) * sh_4_3 * y
|
677 |
+
+ (1 / 15) * math.sqrt(165) * sh_4_4 * x
|
678 |
+
+ (1 / 15) * math.sqrt(33) * sh_4_6 * x
|
679 |
+
)
|
680 |
+
sh_5_5 = -1 / 15 * math.sqrt(110) * sh_4_3 * x + (1 / 3) * math.sqrt(11) * sh_4_4 * y - 1 / 15 * math.sqrt(110) * sh_4_5 * z
|
681 |
+
sh_5_6 = (
|
682 |
+
-1 / 15 * math.sqrt(33) * sh_4_2 * x
|
683 |
+
+ (1 / 15) * math.sqrt(165) * sh_4_4 * z
|
684 |
+
+ (2 / 15) * math.sqrt(66) * sh_4_5 * y
|
685 |
+
- 1 / 15 * math.sqrt(33) * sh_4_6 * z
|
686 |
+
)
|
687 |
+
sh_5_7 = (
|
688 |
+
-1 / 30 * math.sqrt(66) * sh_4_1 * x
|
689 |
+
- 1 / 30 * math.sqrt(462) * sh_4_3 * x
|
690 |
+
+ (1 / 30) * math.sqrt(462) * sh_4_5 * z
|
691 |
+
+ (1 / 15) * math.sqrt(231) * sh_4_6 * y
|
692 |
+
- 1 / 30 * math.sqrt(66) * sh_4_7 * z
|
693 |
+
)
|
694 |
+
sh_5_8 = (
|
695 |
+
-1 / 30 * math.sqrt(22) * sh_4_0 * x
|
696 |
+
- 1 / 15 * math.sqrt(154) * sh_4_2 * x
|
697 |
+
+ (1 / 15) * math.sqrt(154) * sh_4_6 * z
|
698 |
+
+ (4 / 15) * math.sqrt(11) * sh_4_7 * y
|
699 |
+
- 1 / 30 * math.sqrt(22) * sh_4_8 * z
|
700 |
+
)
|
701 |
+
sh_5_9 = -1 / 5 * math.sqrt(22) * sh_4_1 * x + (1 / 5) * math.sqrt(22) * sh_4_7 * z + (1 / 5) * math.sqrt(11) * sh_4_8 * y
|
702 |
+
sh_5_10 = (1 / 10) * math.sqrt(110) * (-sh_4_0 * x + sh_4_8 * z)
|
703 |
+
if lmax == 5:
|
704 |
+
return torch.stack(
|
705 |
+
[
|
706 |
+
sh_1_0,
|
707 |
+
sh_1_1,
|
708 |
+
sh_1_2,
|
709 |
+
sh_2_0,
|
710 |
+
sh_2_1,
|
711 |
+
sh_2_2,
|
712 |
+
sh_2_3,
|
713 |
+
sh_2_4,
|
714 |
+
sh_3_0,
|
715 |
+
sh_3_1,
|
716 |
+
sh_3_2,
|
717 |
+
sh_3_3,
|
718 |
+
sh_3_4,
|
719 |
+
sh_3_5,
|
720 |
+
sh_3_6,
|
721 |
+
sh_4_0,
|
722 |
+
sh_4_1,
|
723 |
+
sh_4_2,
|
724 |
+
sh_4_3,
|
725 |
+
sh_4_4,
|
726 |
+
sh_4_5,
|
727 |
+
sh_4_6,
|
728 |
+
sh_4_7,
|
729 |
+
sh_4_8,
|
730 |
+
sh_5_0,
|
731 |
+
sh_5_1,
|
732 |
+
sh_5_2,
|
733 |
+
sh_5_3,
|
734 |
+
sh_5_4,
|
735 |
+
sh_5_5,
|
736 |
+
sh_5_6,
|
737 |
+
sh_5_7,
|
738 |
+
sh_5_8,
|
739 |
+
sh_5_9,
|
740 |
+
sh_5_10,
|
741 |
+
],
|
742 |
+
dim=-1,
|
743 |
+
)
|
744 |
+
|
745 |
+
sh_6_0 = (1 / 6) * math.sqrt(39) * (sh_5_0 * z + sh_5_10 * x)
|
746 |
+
sh_6_1 = (1 / 6) * math.sqrt(13) * sh_5_0 * y + (1 / 12) * math.sqrt(130) * sh_5_1 * z + (1 / 12) * math.sqrt(130) * sh_5_9 * x
|
747 |
+
sh_6_2 = (
|
748 |
+
-1 / 132 * math.sqrt(286) * sh_5_0 * z
|
749 |
+
+ (1 / 33) * math.sqrt(715) * sh_5_1 * y
|
750 |
+
+ (1 / 132) * math.sqrt(286) * sh_5_10 * x
|
751 |
+
+ (1 / 44) * math.sqrt(1430) * sh_5_2 * z
|
752 |
+
+ (1 / 44) * math.sqrt(1430) * sh_5_8 * x
|
753 |
+
)
|
754 |
+
sh_6_3 = (
|
755 |
+
-1 / 132 * math.sqrt(858) * sh_5_1 * z
|
756 |
+
+ (1 / 22) * math.sqrt(429) * sh_5_2 * y
|
757 |
+
+ (1 / 22) * math.sqrt(286) * sh_5_3 * z
|
758 |
+
+ (1 / 22) * math.sqrt(286) * sh_5_7 * x
|
759 |
+
+ (1 / 132) * math.sqrt(858) * sh_5_9 * x
|
760 |
+
)
|
761 |
+
sh_6_4 = (
|
762 |
+
-1 / 66 * math.sqrt(429) * sh_5_2 * z
|
763 |
+
+ (2 / 33) * math.sqrt(286) * sh_5_3 * y
|
764 |
+
+ (1 / 66) * math.sqrt(2002) * sh_5_4 * z
|
765 |
+
+ (1 / 66) * math.sqrt(2002) * sh_5_6 * x
|
766 |
+
+ (1 / 66) * math.sqrt(429) * sh_5_8 * x
|
767 |
+
)
|
768 |
+
sh_6_5 = (
|
769 |
+
-1 / 66 * math.sqrt(715) * sh_5_3 * z
|
770 |
+
+ (1 / 66) * math.sqrt(5005) * sh_5_4 * y
|
771 |
+
+ (1 / 66) * math.sqrt(3003) * sh_5_5 * x
|
772 |
+
+ (1 / 66) * math.sqrt(715) * sh_5_7 * x
|
773 |
+
)
|
774 |
+
sh_6_6 = -1 / 66 * math.sqrt(2145) * sh_5_4 * x + (1 / 11) * math.sqrt(143) * sh_5_5 * y - 1 / 66 * math.sqrt(2145) * sh_5_6 * z
|
775 |
+
sh_6_7 = (
|
776 |
+
-1 / 66 * math.sqrt(715) * sh_5_3 * x
|
777 |
+
+ (1 / 66) * math.sqrt(3003) * sh_5_5 * z
|
778 |
+
+ (1 / 66) * math.sqrt(5005) * sh_5_6 * y
|
779 |
+
- 1 / 66 * math.sqrt(715) * sh_5_7 * z
|
780 |
+
)
|
781 |
+
sh_6_8 = (
|
782 |
+
-1 / 66 * math.sqrt(429) * sh_5_2 * x
|
783 |
+
- 1 / 66 * math.sqrt(2002) * sh_5_4 * x
|
784 |
+
+ (1 / 66) * math.sqrt(2002) * sh_5_6 * z
|
785 |
+
+ (2 / 33) * math.sqrt(286) * sh_5_7 * y
|
786 |
+
- 1 / 66 * math.sqrt(429) * sh_5_8 * z
|
787 |
+
)
|
788 |
+
sh_6_9 = (
|
789 |
+
-1 / 132 * math.sqrt(858) * sh_5_1 * x
|
790 |
+
- 1 / 22 * math.sqrt(286) * sh_5_3 * x
|
791 |
+
+ (1 / 22) * math.sqrt(286) * sh_5_7 * z
|
792 |
+
+ (1 / 22) * math.sqrt(429) * sh_5_8 * y
|
793 |
+
- 1 / 132 * math.sqrt(858) * sh_5_9 * z
|
794 |
+
)
|
795 |
+
sh_6_10 = (
|
796 |
+
-1 / 132 * math.sqrt(286) * sh_5_0 * x
|
797 |
+
- 1 / 132 * math.sqrt(286) * sh_5_10 * z
|
798 |
+
- 1 / 44 * math.sqrt(1430) * sh_5_2 * x
|
799 |
+
+ (1 / 44) * math.sqrt(1430) * sh_5_8 * z
|
800 |
+
+ (1 / 33) * math.sqrt(715) * sh_5_9 * y
|
801 |
+
)
|
802 |
+
sh_6_11 = -1 / 12 * math.sqrt(130) * sh_5_1 * x + (1 / 6) * math.sqrt(13) * sh_5_10 * y + (1 / 12) * math.sqrt(130) * sh_5_9 * z
|
803 |
+
sh_6_12 = (1 / 6) * math.sqrt(39) * (-sh_5_0 * x + sh_5_10 * z)
|
804 |
+
if lmax == 6:
|
805 |
+
return torch.stack(
|
806 |
+
[
|
807 |
+
sh_1_0,
|
808 |
+
sh_1_1,
|
809 |
+
sh_1_2,
|
810 |
+
sh_2_0,
|
811 |
+
sh_2_1,
|
812 |
+
sh_2_2,
|
813 |
+
sh_2_3,
|
814 |
+
sh_2_4,
|
815 |
+
sh_3_0,
|
816 |
+
sh_3_1,
|
817 |
+
sh_3_2,
|
818 |
+
sh_3_3,
|
819 |
+
sh_3_4,
|
820 |
+
sh_3_5,
|
821 |
+
sh_3_6,
|
822 |
+
sh_4_0,
|
823 |
+
sh_4_1,
|
824 |
+
sh_4_2,
|
825 |
+
sh_4_3,
|
826 |
+
sh_4_4,
|
827 |
+
sh_4_5,
|
828 |
+
sh_4_6,
|
829 |
+
sh_4_7,
|
830 |
+
sh_4_8,
|
831 |
+
sh_5_0,
|
832 |
+
sh_5_1,
|
833 |
+
sh_5_2,
|
834 |
+
sh_5_3,
|
835 |
+
sh_5_4,
|
836 |
+
sh_5_5,
|
837 |
+
sh_5_6,
|
838 |
+
sh_5_7,
|
839 |
+
sh_5_8,
|
840 |
+
sh_5_9,
|
841 |
+
sh_5_10,
|
842 |
+
sh_6_0,
|
843 |
+
sh_6_1,
|
844 |
+
sh_6_2,
|
845 |
+
sh_6_3,
|
846 |
+
sh_6_4,
|
847 |
+
sh_6_5,
|
848 |
+
sh_6_6,
|
849 |
+
sh_6_7,
|
850 |
+
sh_6_8,
|
851 |
+
sh_6_9,
|
852 |
+
sh_6_10,
|
853 |
+
sh_6_11,
|
854 |
+
sh_6_12,
|
855 |
+
],
|
856 |
+
dim=-1,
|
857 |
+
)
|
858 |
+
|
859 |
+
sh_7_0 = (1 / 14) * math.sqrt(210) * (sh_6_0 * z + sh_6_12 * x)
|
860 |
+
sh_7_1 = (1 / 7) * math.sqrt(15) * sh_6_0 * y + (3 / 7) * math.sqrt(5) * sh_6_1 * z + (3 / 7) * math.sqrt(5) * sh_6_11 * x
|
861 |
+
sh_7_2 = (
|
862 |
+
-1 / 182 * math.sqrt(390) * sh_6_0 * z
|
863 |
+
+ (6 / 91) * math.sqrt(130) * sh_6_1 * y
|
864 |
+
+ (3 / 91) * math.sqrt(715) * sh_6_10 * x
|
865 |
+
+ (1 / 182) * math.sqrt(390) * sh_6_12 * x
|
866 |
+
+ (3 / 91) * math.sqrt(715) * sh_6_2 * z
|
867 |
+
)
|
868 |
+
sh_7_3 = (
|
869 |
+
-3 / 182 * math.sqrt(130) * sh_6_1 * z
|
870 |
+
+ (3 / 182) * math.sqrt(130) * sh_6_11 * x
|
871 |
+
+ (3 / 91) * math.sqrt(715) * sh_6_2 * y
|
872 |
+
+ (5 / 182) * math.sqrt(858) * sh_6_3 * z
|
873 |
+
+ (5 / 182) * math.sqrt(858) * sh_6_9 * x
|
874 |
+
)
|
875 |
+
sh_7_4 = (
|
876 |
+
(3 / 91) * math.sqrt(65) * sh_6_10 * x
|
877 |
+
- 3 / 91 * math.sqrt(65) * sh_6_2 * z
|
878 |
+
+ (10 / 91) * math.sqrt(78) * sh_6_3 * y
|
879 |
+
+ (15 / 182) * math.sqrt(78) * sh_6_4 * z
|
880 |
+
+ (15 / 182) * math.sqrt(78) * sh_6_8 * x
|
881 |
+
)
|
882 |
+
sh_7_5 = (
|
883 |
+
-5 / 91 * math.sqrt(39) * sh_6_3 * z
|
884 |
+
+ (15 / 91) * math.sqrt(39) * sh_6_4 * y
|
885 |
+
+ (3 / 91) * math.sqrt(390) * sh_6_5 * z
|
886 |
+
+ (3 / 91) * math.sqrt(390) * sh_6_7 * x
|
887 |
+
+ (5 / 91) * math.sqrt(39) * sh_6_9 * x
|
888 |
+
)
|
889 |
+
sh_7_6 = (
|
890 |
+
-15 / 182 * math.sqrt(26) * sh_6_4 * z
|
891 |
+
+ (12 / 91) * math.sqrt(65) * sh_6_5 * y
|
892 |
+
+ (2 / 91) * math.sqrt(1365) * sh_6_6 * x
|
893 |
+
+ (15 / 182) * math.sqrt(26) * sh_6_8 * x
|
894 |
+
)
|
895 |
+
sh_7_7 = -3 / 91 * math.sqrt(455) * sh_6_5 * x + (1 / 13) * math.sqrt(195) * sh_6_6 * y - 3 / 91 * math.sqrt(455) * sh_6_7 * z
|
896 |
+
sh_7_8 = (
|
897 |
+
-15 / 182 * math.sqrt(26) * sh_6_4 * x
|
898 |
+
+ (2 / 91) * math.sqrt(1365) * sh_6_6 * z
|
899 |
+
+ (12 / 91) * math.sqrt(65) * sh_6_7 * y
|
900 |
+
- 15 / 182 * math.sqrt(26) * sh_6_8 * z
|
901 |
+
)
|
902 |
+
sh_7_9 = (
|
903 |
+
-5 / 91 * math.sqrt(39) * sh_6_3 * x
|
904 |
+
- 3 / 91 * math.sqrt(390) * sh_6_5 * x
|
905 |
+
+ (3 / 91) * math.sqrt(390) * sh_6_7 * z
|
906 |
+
+ (15 / 91) * math.sqrt(39) * sh_6_8 * y
|
907 |
+
- 5 / 91 * math.sqrt(39) * sh_6_9 * z
|
908 |
+
)
|
909 |
+
sh_7_10 = (
|
910 |
+
-3 / 91 * math.sqrt(65) * sh_6_10 * z
|
911 |
+
- 3 / 91 * math.sqrt(65) * sh_6_2 * x
|
912 |
+
- 15 / 182 * math.sqrt(78) * sh_6_4 * x
|
913 |
+
+ (15 / 182) * math.sqrt(78) * sh_6_8 * z
|
914 |
+
+ (10 / 91) * math.sqrt(78) * sh_6_9 * y
|
915 |
+
)
|
916 |
+
sh_7_11 = (
|
917 |
+
-3 / 182 * math.sqrt(130) * sh_6_1 * x
|
918 |
+
+ (3 / 91) * math.sqrt(715) * sh_6_10 * y
|
919 |
+
- 3 / 182 * math.sqrt(130) * sh_6_11 * z
|
920 |
+
- 5 / 182 * math.sqrt(858) * sh_6_3 * x
|
921 |
+
+ (5 / 182) * math.sqrt(858) * sh_6_9 * z
|
922 |
+
)
|
923 |
+
sh_7_12 = (
|
924 |
+
-1 / 182 * math.sqrt(390) * sh_6_0 * x
|
925 |
+
+ (3 / 91) * math.sqrt(715) * sh_6_10 * z
|
926 |
+
+ (6 / 91) * math.sqrt(130) * sh_6_11 * y
|
927 |
+
- 1 / 182 * math.sqrt(390) * sh_6_12 * z
|
928 |
+
- 3 / 91 * math.sqrt(715) * sh_6_2 * x
|
929 |
+
)
|
930 |
+
sh_7_13 = -3 / 7 * math.sqrt(5) * sh_6_1 * x + (3 / 7) * math.sqrt(5) * sh_6_11 * z + (1 / 7) * math.sqrt(15) * sh_6_12 * y
|
931 |
+
sh_7_14 = (1 / 14) * math.sqrt(210) * (-sh_6_0 * x + sh_6_12 * z)
|
932 |
+
if lmax == 7:
|
933 |
+
return torch.stack(
|
934 |
+
[
|
935 |
+
sh_1_0,
|
936 |
+
sh_1_1,
|
937 |
+
sh_1_2,
|
938 |
+
sh_2_0,
|
939 |
+
sh_2_1,
|
940 |
+
sh_2_2,
|
941 |
+
sh_2_3,
|
942 |
+
sh_2_4,
|
943 |
+
sh_3_0,
|
944 |
+
sh_3_1,
|
945 |
+
sh_3_2,
|
946 |
+
sh_3_3,
|
947 |
+
sh_3_4,
|
948 |
+
sh_3_5,
|
949 |
+
sh_3_6,
|
950 |
+
sh_4_0,
|
951 |
+
sh_4_1,
|
952 |
+
sh_4_2,
|
953 |
+
sh_4_3,
|
954 |
+
sh_4_4,
|
955 |
+
sh_4_5,
|
956 |
+
sh_4_6,
|
957 |
+
sh_4_7,
|
958 |
+
sh_4_8,
|
959 |
+
sh_5_0,
|
960 |
+
sh_5_1,
|
961 |
+
sh_5_2,
|
962 |
+
sh_5_3,
|
963 |
+
sh_5_4,
|
964 |
+
sh_5_5,
|
965 |
+
sh_5_6,
|
966 |
+
sh_5_7,
|
967 |
+
sh_5_8,
|
968 |
+
sh_5_9,
|
969 |
+
sh_5_10,
|
970 |
+
sh_6_0,
|
971 |
+
sh_6_1,
|
972 |
+
sh_6_2,
|
973 |
+
sh_6_3,
|
974 |
+
sh_6_4,
|
975 |
+
sh_6_5,
|
976 |
+
sh_6_6,
|
977 |
+
sh_6_7,
|
978 |
+
sh_6_8,
|
979 |
+
sh_6_9,
|
980 |
+
sh_6_10,
|
981 |
+
sh_6_11,
|
982 |
+
sh_6_12,
|
983 |
+
sh_7_0,
|
984 |
+
sh_7_1,
|
985 |
+
sh_7_2,
|
986 |
+
sh_7_3,
|
987 |
+
sh_7_4,
|
988 |
+
sh_7_5,
|
989 |
+
sh_7_6,
|
990 |
+
sh_7_7,
|
991 |
+
sh_7_8,
|
992 |
+
sh_7_9,
|
993 |
+
sh_7_10,
|
994 |
+
sh_7_11,
|
995 |
+
sh_7_12,
|
996 |
+
sh_7_13,
|
997 |
+
sh_7_14,
|
998 |
+
],
|
999 |
+
dim=-1,
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
sh_8_0 = (1 / 4) * math.sqrt(17) * (sh_7_0 * z + sh_7_14 * x)
|
1003 |
+
sh_8_1 = (1 / 8) * math.sqrt(17) * sh_7_0 * y + (1 / 16) * math.sqrt(238) * sh_7_1 * z + (1 / 16) * math.sqrt(238) * sh_7_13 * x
|
1004 |
+
sh_8_2 = (
|
1005 |
+
-1 / 240 * math.sqrt(510) * sh_7_0 * z
|
1006 |
+
+ (1 / 60) * math.sqrt(1785) * sh_7_1 * y
|
1007 |
+
+ (1 / 240) * math.sqrt(46410) * sh_7_12 * x
|
1008 |
+
+ (1 / 240) * math.sqrt(510) * sh_7_14 * x
|
1009 |
+
+ (1 / 240) * math.sqrt(46410) * sh_7_2 * z
|
1010 |
+
)
|
1011 |
+
sh_8_3 = (
|
1012 |
+
(1 / 80)
|
1013 |
+
* math.sqrt(2)
|
1014 |
+
* (
|
1015 |
+
-math.sqrt(85) * sh_7_1 * z
|
1016 |
+
+ math.sqrt(2210) * sh_7_11 * x
|
1017 |
+
+ math.sqrt(85) * sh_7_13 * x
|
1018 |
+
+ math.sqrt(2210) * sh_7_2 * y
|
1019 |
+
+ math.sqrt(2210) * sh_7_3 * z
|
1020 |
+
)
|
1021 |
+
)
|
1022 |
+
sh_8_4 = (
|
1023 |
+
(1 / 40) * math.sqrt(935) * sh_7_10 * x
|
1024 |
+
+ (1 / 40) * math.sqrt(85) * sh_7_12 * x
|
1025 |
+
- 1 / 40 * math.sqrt(85) * sh_7_2 * z
|
1026 |
+
+ (1 / 10) * math.sqrt(85) * sh_7_3 * y
|
1027 |
+
+ (1 / 40) * math.sqrt(935) * sh_7_4 * z
|
1028 |
+
)
|
1029 |
+
sh_8_5 = (
|
1030 |
+
(1 / 48)
|
1031 |
+
* math.sqrt(2)
|
1032 |
+
* (
|
1033 |
+
math.sqrt(102) * sh_7_11 * x
|
1034 |
+
- math.sqrt(102) * sh_7_3 * z
|
1035 |
+
+ math.sqrt(1122) * sh_7_4 * y
|
1036 |
+
+ math.sqrt(561) * sh_7_5 * z
|
1037 |
+
+ math.sqrt(561) * sh_7_9 * x
|
1038 |
+
)
|
1039 |
+
)
|
1040 |
+
sh_8_6 = (
|
1041 |
+
(1 / 16) * math.sqrt(34) * sh_7_10 * x
|
1042 |
+
- 1 / 16 * math.sqrt(34) * sh_7_4 * z
|
1043 |
+
+ (1 / 4) * math.sqrt(17) * sh_7_5 * y
|
1044 |
+
+ (1 / 16) * math.sqrt(102) * sh_7_6 * z
|
1045 |
+
+ (1 / 16) * math.sqrt(102) * sh_7_8 * x
|
1046 |
+
)
|
1047 |
+
sh_8_7 = (
|
1048 |
+
-1 / 80 * math.sqrt(1190) * sh_7_5 * z
|
1049 |
+
+ (1 / 40) * math.sqrt(1785) * sh_7_6 * y
|
1050 |
+
+ (1 / 20) * math.sqrt(255) * sh_7_7 * x
|
1051 |
+
+ (1 / 80) * math.sqrt(1190) * sh_7_9 * x
|
1052 |
+
)
|
1053 |
+
sh_8_8 = -1 / 60 * math.sqrt(1785) * sh_7_6 * x + (1 / 15) * math.sqrt(255) * sh_7_7 * y - 1 / 60 * math.sqrt(1785) * sh_7_8 * z
|
1054 |
+
sh_8_9 = (
|
1055 |
+
-1 / 80 * math.sqrt(1190) * sh_7_5 * x
|
1056 |
+
+ (1 / 20) * math.sqrt(255) * sh_7_7 * z
|
1057 |
+
+ (1 / 40) * math.sqrt(1785) * sh_7_8 * y
|
1058 |
+
- 1 / 80 * math.sqrt(1190) * sh_7_9 * z
|
1059 |
+
)
|
1060 |
+
sh_8_10 = (
|
1061 |
+
-1 / 16 * math.sqrt(34) * sh_7_10 * z
|
1062 |
+
- 1 / 16 * math.sqrt(34) * sh_7_4 * x
|
1063 |
+
- 1 / 16 * math.sqrt(102) * sh_7_6 * x
|
1064 |
+
+ (1 / 16) * math.sqrt(102) * sh_7_8 * z
|
1065 |
+
+ (1 / 4) * math.sqrt(17) * sh_7_9 * y
|
1066 |
+
)
|
1067 |
+
sh_8_11 = (
|
1068 |
+
(1 / 48)
|
1069 |
+
* math.sqrt(2)
|
1070 |
+
* (
|
1071 |
+
math.sqrt(1122) * sh_7_10 * y
|
1072 |
+
- math.sqrt(102) * sh_7_11 * z
|
1073 |
+
- math.sqrt(102) * sh_7_3 * x
|
1074 |
+
- math.sqrt(561) * sh_7_5 * x
|
1075 |
+
+ math.sqrt(561) * sh_7_9 * z
|
1076 |
+
)
|
1077 |
+
)
|
1078 |
+
sh_8_12 = (
|
1079 |
+
(1 / 40) * math.sqrt(935) * sh_7_10 * z
|
1080 |
+
+ (1 / 10) * math.sqrt(85) * sh_7_11 * y
|
1081 |
+
- 1 / 40 * math.sqrt(85) * sh_7_12 * z
|
1082 |
+
- 1 / 40 * math.sqrt(85) * sh_7_2 * x
|
1083 |
+
- 1 / 40 * math.sqrt(935) * sh_7_4 * x
|
1084 |
+
)
|
1085 |
+
sh_8_13 = (
|
1086 |
+
(1 / 80)
|
1087 |
+
* math.sqrt(2)
|
1088 |
+
* (
|
1089 |
+
-math.sqrt(85) * sh_7_1 * x
|
1090 |
+
+ math.sqrt(2210) * sh_7_11 * z
|
1091 |
+
+ math.sqrt(2210) * sh_7_12 * y
|
1092 |
+
- math.sqrt(85) * sh_7_13 * z
|
1093 |
+
- math.sqrt(2210) * sh_7_3 * x
|
1094 |
+
)
|
1095 |
+
)
|
1096 |
+
sh_8_14 = (
|
1097 |
+
-1 / 240 * math.sqrt(510) * sh_7_0 * x
|
1098 |
+
+ (1 / 240) * math.sqrt(46410) * sh_7_12 * z
|
1099 |
+
+ (1 / 60) * math.sqrt(1785) * sh_7_13 * y
|
1100 |
+
- 1 / 240 * math.sqrt(510) * sh_7_14 * z
|
1101 |
+
- 1 / 240 * math.sqrt(46410) * sh_7_2 * x
|
1102 |
+
)
|
1103 |
+
sh_8_15 = -1 / 16 * math.sqrt(238) * sh_7_1 * x + (1 / 16) * math.sqrt(238) * sh_7_13 * z + (1 / 8) * math.sqrt(17) * sh_7_14 * y
|
1104 |
+
sh_8_16 = (1 / 4) * math.sqrt(17) * (-sh_7_0 * x + sh_7_14 * z)
|
1105 |
+
if lmax == 8:
|
1106 |
+
return torch.stack(
|
1107 |
+
[
|
1108 |
+
sh_1_0,
|
1109 |
+
sh_1_1,
|
1110 |
+
sh_1_2,
|
1111 |
+
sh_2_0,
|
1112 |
+
sh_2_1,
|
1113 |
+
sh_2_2,
|
1114 |
+
sh_2_3,
|
1115 |
+
sh_2_4,
|
1116 |
+
sh_3_0,
|
1117 |
+
sh_3_1,
|
1118 |
+
sh_3_2,
|
1119 |
+
sh_3_3,
|
1120 |
+
sh_3_4,
|
1121 |
+
sh_3_5,
|
1122 |
+
sh_3_6,
|
1123 |
+
sh_4_0,
|
1124 |
+
sh_4_1,
|
1125 |
+
sh_4_2,
|
1126 |
+
sh_4_3,
|
1127 |
+
sh_4_4,
|
1128 |
+
sh_4_5,
|
1129 |
+
sh_4_6,
|
1130 |
+
sh_4_7,
|
1131 |
+
sh_4_8,
|
1132 |
+
sh_5_0,
|
1133 |
+
sh_5_1,
|
1134 |
+
sh_5_2,
|
1135 |
+
sh_5_3,
|
1136 |
+
sh_5_4,
|
1137 |
+
sh_5_5,
|
1138 |
+
sh_5_6,
|
1139 |
+
sh_5_7,
|
1140 |
+
sh_5_8,
|
1141 |
+
sh_5_9,
|
1142 |
+
sh_5_10,
|
1143 |
+
sh_6_0,
|
1144 |
+
sh_6_1,
|
1145 |
+
sh_6_2,
|
1146 |
+
sh_6_3,
|
1147 |
+
sh_6_4,
|
1148 |
+
sh_6_5,
|
1149 |
+
sh_6_6,
|
1150 |
+
sh_6_7,
|
1151 |
+
sh_6_8,
|
1152 |
+
sh_6_9,
|
1153 |
+
sh_6_10,
|
1154 |
+
sh_6_11,
|
1155 |
+
sh_6_12,
|
1156 |
+
sh_7_0,
|
1157 |
+
sh_7_1,
|
1158 |
+
sh_7_2,
|
1159 |
+
sh_7_3,
|
1160 |
+
sh_7_4,
|
1161 |
+
sh_7_5,
|
1162 |
+
sh_7_6,
|
1163 |
+
sh_7_7,
|
1164 |
+
sh_7_8,
|
1165 |
+
sh_7_9,
|
1166 |
+
sh_7_10,
|
1167 |
+
sh_7_11,
|
1168 |
+
sh_7_12,
|
1169 |
+
sh_7_13,
|
1170 |
+
sh_7_14,
|
1171 |
+
sh_8_0,
|
1172 |
+
sh_8_1,
|
1173 |
+
sh_8_2,
|
1174 |
+
sh_8_3,
|
1175 |
+
sh_8_4,
|
1176 |
+
sh_8_5,
|
1177 |
+
sh_8_6,
|
1178 |
+
sh_8_7,
|
1179 |
+
sh_8_8,
|
1180 |
+
sh_8_9,
|
1181 |
+
sh_8_10,
|
1182 |
+
sh_8_11,
|
1183 |
+
sh_8_12,
|
1184 |
+
sh_8_13,
|
1185 |
+
sh_8_14,
|
1186 |
+
sh_8_15,
|
1187 |
+
sh_8_16,
|
1188 |
+
],
|
1189 |
+
dim=-1,
|
1190 |
+
)
|
1191 |
+
|
1192 |
+
|
1193 |
+
def lmax_tensor_size(lmax):
|
1194 |
+
return ((lmax + 1) ** 2) - 1
|
1195 |
+
|
1196 |
+
|
1197 |
+
def get_split_sizes_from_dim(feature_dim):
|
1198 |
+
"""
|
1199 |
+
Find the lmax value and return split sizes for torch.split based on feature dimension.
|
1200 |
+
|
1201 |
+
Args:
|
1202 |
+
feature_dim: The dimension of the feature (shape[1] of the tensor)
|
1203 |
+
|
1204 |
+
Returns:
|
1205 |
+
split_sizes: A list of split sizes for torch.split (sizes of spherical harmonic components)
|
1206 |
+
"""
|
1207 |
+
lmax = 1
|
1208 |
+
while lmax_tensor_size(lmax) < feature_dim:
|
1209 |
+
lmax += 1
|
1210 |
+
|
1211 |
+
if lmax_tensor_size(lmax) != feature_dim:
|
1212 |
+
raise ValueError(f"Feature dimension {feature_dim} does not correspond to a valid lmax value")
|
1213 |
+
|
1214 |
+
# Return the sizes of each spherical harmonic component
|
1215 |
+
return [2 * l + 1 for l in range(1, lmax + 1)] # noqa: E741
|
1216 |
+
|
1217 |
+
|
1218 |
+
class TensorLayerNorm(nn.Module):
|
1219 |
+
def __init__(self, hidden_channels, trainable):
|
1220 |
+
super(TensorLayerNorm, self).__init__()
|
1221 |
+
|
1222 |
+
self.hidden_channels = hidden_channels
|
1223 |
+
self.eps = 1e-12
|
1224 |
+
|
1225 |
+
weight = torch.ones(self.hidden_channels)
|
1226 |
+
if trainable:
|
1227 |
+
self.register_parameter("weight", nn.Parameter(weight))
|
1228 |
+
else:
|
1229 |
+
self.register_buffer("weight", weight)
|
1230 |
+
|
1231 |
+
self.reset_parameters()
|
1232 |
+
|
1233 |
+
def reset_parameters(self):
|
1234 |
+
weight = torch.ones(self.hidden_channels)
|
1235 |
+
self.weight.data.copy_(weight)
|
1236 |
+
|
1237 |
+
def max_min_norm(self, tensor):
|
1238 |
+
# Based on VisNet (https://www.nature.com/articles/s41467-023-43720-2)
|
1239 |
+
dist = torch.norm(tensor, dim=1, keepdim=True)
|
1240 |
+
|
1241 |
+
if (dist == 0).all():
|
1242 |
+
return torch.zeros_like(tensor)
|
1243 |
+
|
1244 |
+
dist = dist.clamp(min=self.eps)
|
1245 |
+
direct = tensor / dist
|
1246 |
+
|
1247 |
+
max_val, _ = torch.max(dist, dim=-1)
|
1248 |
+
min_val, _ = torch.min(dist, dim=-1)
|
1249 |
+
delta = (max_val - min_val).view(-1)
|
1250 |
+
delta = torch.where(delta == 0, torch.ones_like(delta), delta)
|
1251 |
+
dist = (dist - min_val.view(-1, 1, 1)) / delta.view(-1, 1, 1)
|
1252 |
+
|
1253 |
+
return F.relu(dist) * direct
|
1254 |
+
|
1255 |
+
def forward(self, tensor):
|
1256 |
+
# vec: (num_atoms, feature_dim, hidden_channels)
|
1257 |
+
feature_dim = tensor.shape[1]
|
1258 |
+
|
1259 |
+
try:
|
1260 |
+
split_sizes = get_split_sizes_from_dim(feature_dim)
|
1261 |
+
except ValueError as e:
|
1262 |
+
raise ValueError(f"VecLayerNorm received unsupported feature dimension {feature_dim}: {str(e)}")
|
1263 |
+
|
1264 |
+
# Split the vector into parts
|
1265 |
+
vec_parts = torch.split(tensor, split_sizes, dim=1)
|
1266 |
+
|
1267 |
+
# Normalize each part separately
|
1268 |
+
normalized_parts = [self.max_min_norm(part) for part in vec_parts]
|
1269 |
+
|
1270 |
+
# Concatenate the normalized parts
|
1271 |
+
normalized_vec = torch.cat(normalized_parts, dim=1)
|
1272 |
+
|
1273 |
+
# Apply weight
|
1274 |
+
return normalized_vec * self.weight.unsqueeze(0).unsqueeze(0)
|
1275 |
+
|
1276 |
+
|
1277 |
+
def normalize_string(s: str) -> str:
|
1278 |
+
return s.lower().replace("-", "").replace("_", "").replace(" ", "")
|
1279 |
+
|
1280 |
+
|
1281 |
+
class Swish(nn.Module):
|
1282 |
+
def __init__(self):
|
1283 |
+
super(Swish, self).__init__()
|
1284 |
+
|
1285 |
+
def forward(self, x):
|
1286 |
+
return x * torch.sigmoid(x)
|
1287 |
+
|
1288 |
+
|
1289 |
+
act_class_mapping = {"ssp": ShiftedSoftplus, "silu": nn.SiLU, "tanh": nn.Tanh, "sigmoid": nn.Sigmoid, "swish": Swish}
|
1290 |
+
|
1291 |
+
|
1292 |
+
# https://github.com/sunglasses-ai/classy/blob/3e74cba1fdf1b9f9f2ba1cfcfa6c2017aa59fc04/classy/optim/factories.py#L14
|
1293 |
+
def get_activations(optional=False, *args, **kwargs):
|
1294 |
+
activations = {
|
1295 |
+
normalize_string(act.__name__): act
|
1296 |
+
for act in vars(torch.nn.modules.activation).values()
|
1297 |
+
if isinstance(act, type) and issubclass(act, torch.nn.Module)
|
1298 |
+
}
|
1299 |
+
activations.update(
|
1300 |
+
{
|
1301 |
+
"relu": torch.nn.ReLU,
|
1302 |
+
"elu": torch.nn.ELU,
|
1303 |
+
"sigmoid": torch.nn.Sigmoid,
|
1304 |
+
"silu": torch.nn.SiLU,
|
1305 |
+
"mish": torch.nn.Mish,
|
1306 |
+
"swish": torch.nn.SiLU,
|
1307 |
+
"selu": torch.nn.SELU,
|
1308 |
+
"scaled_swish": scaled_silu,
|
1309 |
+
"softplus": shifted_softplus,
|
1310 |
+
"slrelu": SmoothLeakyReLU,
|
1311 |
+
}
|
1312 |
+
)
|
1313 |
+
|
1314 |
+
if optional:
|
1315 |
+
activations[""] = None
|
1316 |
+
|
1317 |
+
return activations
|
1318 |
+
|
1319 |
+
|
1320 |
+
def get_activations_none(optional=False, *args, **kwargs):
|
1321 |
+
activations = {
|
1322 |
+
normalize_string(act.__name__): act
|
1323 |
+
for act in vars(torch.nn.modules.activation).values()
|
1324 |
+
if isinstance(act, type) and issubclass(act, torch.nn.Module)
|
1325 |
+
}
|
1326 |
+
activations.update(
|
1327 |
+
{
|
1328 |
+
"relu": torch.nn.ReLU,
|
1329 |
+
"elu": torch.nn.ELU,
|
1330 |
+
"sigmoid": torch.nn.Sigmoid,
|
1331 |
+
"silu": torch.nn.SiLU,
|
1332 |
+
"selu": torch.nn.SELU,
|
1333 |
+
}
|
1334 |
+
)
|
1335 |
+
|
1336 |
+
if optional:
|
1337 |
+
activations[""] = None
|
1338 |
+
activations[None] = None
|
1339 |
+
|
1340 |
+
return activations
|
1341 |
+
|
1342 |
+
|
1343 |
+
def dictionary_to_option(options, selected):
|
1344 |
+
if selected not in options:
|
1345 |
+
raise ValueError(f'Invalid choice "{selected}", choose one from {", ".join(list(options.keys()))} ')
|
1346 |
+
|
1347 |
+
activation = options[selected]
|
1348 |
+
if inspect.isclass(activation):
|
1349 |
+
activation = activation()
|
1350 |
+
return activation
|
1351 |
+
|
1352 |
+
|
1353 |
+
def str2act(input_str, *args, **kwargs):
|
1354 |
+
if input_str == "":
|
1355 |
+
return None
|
1356 |
+
|
1357 |
+
act = get_activations(optional=True, *args, **kwargs)
|
1358 |
+
out = dictionary_to_option(act, input_str)
|
1359 |
+
return out
|
1360 |
+
|
1361 |
+
|
1362 |
+
class ExpNormalSmearing(nn.Module):
|
1363 |
+
def __init__(self, cutoff=5.0, n_rbf=50, trainable=False):
|
1364 |
+
super(ExpNormalSmearing, self).__init__()
|
1365 |
+
if isinstance(cutoff, torch.Tensor):
|
1366 |
+
cutoff = cutoff.item()
|
1367 |
+
self.cutoff = cutoff
|
1368 |
+
self.n_rbf = n_rbf
|
1369 |
+
self.trainable = trainable
|
1370 |
+
|
1371 |
+
self.cutoff_fn = CosineCutoff(cutoff)
|
1372 |
+
self.alpha = 5.0 / cutoff
|
1373 |
+
|
1374 |
+
means, betas = self._initial_params()
|
1375 |
+
if trainable:
|
1376 |
+
self.register_parameter("means", nn.Parameter(means))
|
1377 |
+
self.register_parameter("betas", nn.Parameter(betas))
|
1378 |
+
else:
|
1379 |
+
self.register_buffer("means", means)
|
1380 |
+
self.register_buffer("betas", betas)
|
1381 |
+
|
1382 |
+
def _initial_params(self):
|
1383 |
+
start_value = torch.exp(torch.scalar_tensor(-self.cutoff))
|
1384 |
+
means = torch.linspace(start_value, 1, self.n_rbf)
|
1385 |
+
betas = torch.tensor([(2 / self.n_rbf * (1 - start_value)) ** -2] * self.n_rbf)
|
1386 |
+
return means, betas
|
1387 |
+
|
1388 |
+
def reset_parameters(self):
|
1389 |
+
means, betas = self._initial_params()
|
1390 |
+
self.means.data.copy_(means)
|
1391 |
+
self.betas.data.copy_(betas)
|
1392 |
+
|
1393 |
+
def forward(self, dist):
|
1394 |
+
dist = dist.unsqueeze(-1)
|
1395 |
+
return self.cutoff_fn(dist) * torch.exp(-self.betas * (torch.exp(self.alpha * (-dist)) - self.means) ** 2)
|
1396 |
+
|
1397 |
+
|
1398 |
+
def str2basis(input_str):
|
1399 |
+
if type(input_str) != str: # noqa: E721
|
1400 |
+
return input_str
|
1401 |
+
|
1402 |
+
if input_str == "BesselBasis":
|
1403 |
+
radial_basis = BesselBasis
|
1404 |
+
elif input_str == "GaussianRBF":
|
1405 |
+
radial_basis = GaussianRBF
|
1406 |
+
elif input_str.lower() == "expnorm":
|
1407 |
+
radial_basis = ExpNormalSmearing
|
1408 |
+
else:
|
1409 |
+
raise ValueError("Unknown radial basis: {}".format(input_str))
|
1410 |
+
|
1411 |
+
return radial_basis
|
1412 |
+
|
1413 |
+
|
1414 |
+
class MLP(nn.Module):
|
1415 |
+
def __init__(
|
1416 |
+
self,
|
1417 |
+
hidden_dims: List[int],
|
1418 |
+
bias=True,
|
1419 |
+
activation=None,
|
1420 |
+
last_activation=None,
|
1421 |
+
weight_init=xavier_uniform_,
|
1422 |
+
bias_init=zeros_initializer,
|
1423 |
+
norm="",
|
1424 |
+
):
|
1425 |
+
super().__init__()
|
1426 |
+
|
1427 |
+
# hidden_dims = [hidden, half, hidden]
|
1428 |
+
|
1429 |
+
dims = hidden_dims
|
1430 |
+
n_layers = len(dims)
|
1431 |
+
|
1432 |
+
DenseMLP = partial(Dense, bias=bias, weight_init=weight_init, bias_init=bias_init)
|
1433 |
+
|
1434 |
+
self.dense_layers = nn.ModuleList(
|
1435 |
+
[DenseMLP(dims[i], dims[i + 1], activation=activation, norm=norm) for i in range(n_layers - 2)]
|
1436 |
+
+ [DenseMLP(dims[-2], dims[-1], activation=last_activation)]
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
self.layers = nn.Sequential(*self.dense_layers)
|
1440 |
+
|
1441 |
+
self.reset_parameters()
|
1442 |
+
|
1443 |
+
def reset_parameters(self):
|
1444 |
+
for m in self.dense_layers:
|
1445 |
+
m.reset_parameters()
|
1446 |
+
|
1447 |
+
def forward(self, x):
|
1448 |
+
return self.layers(x)
|
1449 |
+
|
1450 |
+
|
1451 |
+
class NodeInit(MessagePassing):
|
1452 |
+
def __init__(
|
1453 |
+
self,
|
1454 |
+
hidden_channels,
|
1455 |
+
num_rbf,
|
1456 |
+
cutoff,
|
1457 |
+
max_z=100,
|
1458 |
+
activation=F.silu,
|
1459 |
+
proj_ln="",
|
1460 |
+
last_activation=False,
|
1461 |
+
weight_init=nn.init.xavier_uniform_,
|
1462 |
+
bias_init=nn.init.zeros_,
|
1463 |
+
concat=False,
|
1464 |
+
):
|
1465 |
+
super(NodeInit, self).__init__(aggr="add")
|
1466 |
+
|
1467 |
+
if type(hidden_channels) == int: # noqa: E721
|
1468 |
+
hidden_channels = [hidden_channels]
|
1469 |
+
|
1470 |
+
first_channel = hidden_channels[0]
|
1471 |
+
last_channel = hidden_channels[-1]
|
1472 |
+
|
1473 |
+
DenseInit = partial(Dense, weight_init=weight_init, bias_init=bias_init) # noqa: F841
|
1474 |
+
|
1475 |
+
self.concat = concat
|
1476 |
+
self.embedding = nn.Embedding(max_z, last_channel)
|
1477 |
+
if self.concat:
|
1478 |
+
self.embedding_src = nn.Embedding(max_z, first_channel)
|
1479 |
+
self.distance_proj = MLP(
|
1480 |
+
[num_rbf + 2 * first_channel] + hidden_channels,
|
1481 |
+
activation=activation,
|
1482 |
+
norm=proj_ln,
|
1483 |
+
weight_init=weight_init,
|
1484 |
+
bias_init=bias_init,
|
1485 |
+
last_activation=activation if last_activation else None,
|
1486 |
+
)
|
1487 |
+
else:
|
1488 |
+
self.distance_proj = MLP(
|
1489 |
+
[num_rbf] + [last_channel], activation=None, norm="", weight_init=weight_init, bias_init=bias_init, last_activation=None
|
1490 |
+
)
|
1491 |
+
|
1492 |
+
if not self.concat:
|
1493 |
+
self.combine = MLP(
|
1494 |
+
[2 * last_channel] + hidden_channels,
|
1495 |
+
activation=activation,
|
1496 |
+
norm=proj_ln,
|
1497 |
+
weight_init=weight_init,
|
1498 |
+
bias_init=bias_init,
|
1499 |
+
last_activation=activation if last_activation else None,
|
1500 |
+
)
|
1501 |
+
self.cutoff = CosineCutoff(cutoff)
|
1502 |
+
|
1503 |
+
self.reset_parameters()
|
1504 |
+
|
1505 |
+
def reset_parameters(self):
|
1506 |
+
self.embedding.reset_parameters()
|
1507 |
+
if self.concat:
|
1508 |
+
self.embedding_src.reset_parameters()
|
1509 |
+
self.distance_proj.reset_parameters()
|
1510 |
+
if not self.concat:
|
1511 |
+
self.combine.reset_parameters()
|
1512 |
+
|
1513 |
+
def forward(self, z, x, edge_index, edge_weight, edge_attr):
|
1514 |
+
# remove self loops
|
1515 |
+
mask = edge_index[0] != edge_index[1]
|
1516 |
+
if not mask.all():
|
1517 |
+
edge_index = edge_index[:, mask]
|
1518 |
+
edge_weight = edge_weight[mask]
|
1519 |
+
edge_attr = edge_attr[mask]
|
1520 |
+
|
1521 |
+
x_neighbors = self.embedding(z)
|
1522 |
+
if not self.concat:
|
1523 |
+
C = self.cutoff(edge_weight)
|
1524 |
+
W = self.distance_proj(edge_attr) * C.view(-1, 1)
|
1525 |
+
x_src = x_neighbors
|
1526 |
+
else:
|
1527 |
+
x_src = self.embedding_src(z)
|
1528 |
+
W = edge_attr
|
1529 |
+
# propagate_type: (x: Tensor, s:Tensor, W: Tensor)
|
1530 |
+
x_neighbors = self.propagate(edge_index, x=x_neighbors, s=x_src, W=W, size=None)
|
1531 |
+
|
1532 |
+
if self.concat:
|
1533 |
+
x_neighbors = x + x_neighbors
|
1534 |
+
else:
|
1535 |
+
x_neighbors = self.combine(torch.cat([x, x_neighbors], dim=1))
|
1536 |
+
return x_neighbors
|
1537 |
+
|
1538 |
+
def message(self, s_i, x_j, W):
|
1539 |
+
if self.concat:
|
1540 |
+
return self.distance_proj(torch.cat([W, x_j, s_i], dim=1))
|
1541 |
+
return x_j * W
|
1542 |
+
|
1543 |
+
|
1544 |
+
class EdgeInit(MessagePassing):
|
1545 |
+
def __init__(
|
1546 |
+
self,
|
1547 |
+
num_rbf,
|
1548 |
+
hidden_channels,
|
1549 |
+
activation=F.silu,
|
1550 |
+
proj_ln="",
|
1551 |
+
last_activation=False,
|
1552 |
+
weight_init=nn.init.xavier_uniform_,
|
1553 |
+
bias_init=nn.init.zeros_,
|
1554 |
+
):
|
1555 |
+
super(EdgeInit, self).__init__(aggr=None)
|
1556 |
+
self.activation = activation
|
1557 |
+
|
1558 |
+
if type(hidden_channels) == int: # noqa: E721
|
1559 |
+
hidden_channels = [hidden_channels]
|
1560 |
+
self.edge_up = MLP(
|
1561 |
+
[num_rbf] + hidden_channels,
|
1562 |
+
activation=activation,
|
1563 |
+
norm=proj_ln,
|
1564 |
+
weight_init=weight_init,
|
1565 |
+
bias_init=bias_init,
|
1566 |
+
last_activation=activation if last_activation else None,
|
1567 |
+
)
|
1568 |
+
|
1569 |
+
self.reset_parameters()
|
1570 |
+
|
1571 |
+
def reset_parameters(self):
|
1572 |
+
self.edge_up.reset_parameters()
|
1573 |
+
|
1574 |
+
def forward(self, edge_index, edge_attr, x):
|
1575 |
+
# propagate_type: (x: Tensor, edge_attr: Tensor)
|
1576 |
+
out = self.propagate(edge_index, x=x, edge_attr=edge_attr)
|
1577 |
+
return out
|
1578 |
+
|
1579 |
+
def message(self, x_i, x_j, edge_attr):
|
1580 |
+
return (x_i + x_j) * self.edge_up(edge_attr)
|
1581 |
+
|
1582 |
+
def aggregate(self, features, index):
|
1583 |
+
# no aggregate
|
1584 |
+
return features
|
models/pos_egnn/posegnn/utils.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from torch import Tensor, nn
|
5 |
+
from torch_nl import compute_neighborlist
|
6 |
+
from torch_nl.geometry import compute_distances
|
7 |
+
from torch_nl.neighbor_list import compute_cell_shifts
|
8 |
+
|
9 |
+
|
10 |
+
ACT_CLASS_MAPPING = {"silu": nn.SiLU, "tanh": nn.Tanh, "sigmoid": nn.Sigmoid, "gelu": nn.GELU}
|
11 |
+
|
12 |
+
class BatchedPeriodicDistance(nn.Module):
|
13 |
+
"""
|
14 |
+
Wraps the `torch_nl` package to calculate Periodic Distance using
|
15 |
+
PyTorch operations efficiently. Compute the neighbor list for a given cutoff.
|
16 |
+
Reference: https://github.com/felixmusil/torch_nl
|
17 |
+
"""
|
18 |
+
|
19 |
+
def __init__(self, cutoff: float = 5.0) -> None:
|
20 |
+
super().__init__()
|
21 |
+
self.cutoff = cutoff
|
22 |
+
self.self_interactions = False
|
23 |
+
|
24 |
+
def forward(
|
25 |
+
self, pos: Tensor, box: Tensor, batch: Optional[Tensor] = None, precomputed_edge_index=None, precomputed_shifts_idx=None
|
26 |
+
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
|
27 |
+
# No batch, single sample
|
28 |
+
if batch is None:
|
29 |
+
n_atoms = pos.shape[0]
|
30 |
+
batch = torch.zeros(n_atoms, device=pos.device, dtype=torch.int64)
|
31 |
+
|
32 |
+
is_zero = torch.eq(box, 0)
|
33 |
+
is_not_all_zero = ~is_zero.all(dim=-1).all(dim=-1)
|
34 |
+
pbc = is_not_all_zero.unsqueeze(-1).repeat(1, 3) # We need to change this when dealing with interfaces
|
35 |
+
|
36 |
+
if (precomputed_edge_index is None) or (precomputed_shifts_idx is None):
|
37 |
+
edge_index, batch_mapping, shifts_idx = compute_neighborlist(self.cutoff, pos, box, pbc, batch, self.self_interactions)
|
38 |
+
else:
|
39 |
+
edge_index = precomputed_edge_index
|
40 |
+
shifts_idx = precomputed_shifts_idx
|
41 |
+
batch_mapping = batch[edge_index[0]] # NOTE: should be same as edge_index[1]
|
42 |
+
|
43 |
+
cell_shifts = compute_cell_shifts(box, shifts_idx, batch_mapping)
|
44 |
+
edge_weight = compute_distances(pos, edge_index, cell_shifts)
|
45 |
+
|
46 |
+
edge_vec = -(pos[edge_index[1]] - pos[edge_index[0]] + cell_shifts)
|
47 |
+
|
48 |
+
# edge_weight and edge_vec should have grad_fn
|
49 |
+
return edge_index, edge_weight, edge_vec, shifts_idx
|
50 |
+
|
51 |
+
|
52 |
+
def get_symmetric_displacement(
|
53 |
+
positions: torch.Tensor,
|
54 |
+
box: Optional[torch.Tensor],
|
55 |
+
num_graphs: int,
|
56 |
+
batch: torch.Tensor,
|
57 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
58 |
+
displacement = torch.zeros(
|
59 |
+
(num_graphs, 3, 3),
|
60 |
+
dtype=positions.dtype,
|
61 |
+
device=positions.device,
|
62 |
+
)
|
63 |
+
displacement.requires_grad_(True)
|
64 |
+
symmetric_displacement = 0.5 * (displacement + displacement.transpose(-1, -2))
|
65 |
+
positions = positions + torch.einsum("be,bec->bc", positions, symmetric_displacement[batch])
|
66 |
+
box = box.view(-1, 3, 3)
|
67 |
+
box = box + torch.matmul(box, symmetric_displacement)
|
68 |
+
|
69 |
+
return positions, box, displacement
|
models/pos_egnn/requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-f https://data.pyg.org/whl/torch-2.5.1%2Bcu121.html
|
2 |
+
-f https://data.pyg.org/whl/torch-2.5.1%2Bcpu.html
|
3 |
+
numpy==1.26.4
|
4 |
+
ase==3.24.0
|
5 |
+
torch==2.5.1
|
6 |
+
torch_geometric==2.5.3
|
7 |
+
torch_nl==0.3
|
8 |
+
torch_scatter
|
9 |
+
torch_sparse
|
10 |
+
tqdm>=4.66.1
|
requirements.txt
CHANGED
@@ -27,3 +27,5 @@ torch-optimizer
|
|
27 |
tqdm>=4.66.4
|
28 |
pandas==2.2.3
|
29 |
mordred
|
|
|
|
|
|
27 |
tqdm>=4.66.4
|
28 |
pandas==2.2.3
|
29 |
mordred
|
30 |
+
ase==3.24.0
|
31 |
+
torch_nl==0.3
|