Spaces:
Running
Running
Update models/selfies_model/load.py
Browse files- models/selfies_model/load.py +70 -64
models/selfies_model/load.py
CHANGED
@@ -1,96 +1,102 @@
|
|
1 |
-
import os
|
2 |
-
import sys
|
3 |
import torch
|
4 |
-
import selfies as sf
|
5 |
-
import pickle
|
6 |
-
import pandas as pd
|
7 |
import numpy as np
|
8 |
-
|
9 |
from rdkit import Chem
|
10 |
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
|
|
|
|
11 |
|
|
|
|
|
12 |
|
13 |
-
class SELFIES(torch.nn.Module):
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def __init__(self):
|
16 |
super().__init__()
|
17 |
self.model = None
|
18 |
self.tokenizer = None
|
19 |
self.invalid = []
|
20 |
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
try:
|
26 |
-
|
|
|
27 |
except:
|
28 |
-
|
29 |
-
smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles.rstrip()))
|
30 |
-
selfies = sf.encoder(smiles)
|
31 |
-
except:
|
32 |
-
selfies = "[]"
|
33 |
-
self.invalid.append(i)
|
34 |
-
|
35 |
-
spaced_selfies_batch.append(selfies.replace('][', '] ['))
|
36 |
-
|
37 |
-
return spaced_selfies_batch
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
def get_embedding(self, selfies):
|
41 |
-
encoding = self.tokenizer(selfies["selfies"], return_tensors='pt', max_length=128, truncation=True, padding='max_length')
|
42 |
-
input_ids = encoding['input_ids']
|
43 |
-
attention_mask = encoding['attention_mask']
|
44 |
-
outputs = self.model.encoder(input_ids=input_ids, attention_mask=attention_mask)
|
45 |
model_output = outputs.last_hidden_state
|
46 |
-
|
47 |
-
input_mask_expanded = attention_mask.unsqueeze(-1).expand(model_output.size()).float()
|
48 |
sum_embeddings = torch.sum(model_output * input_mask_expanded, 1)
|
49 |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
50 |
-
|
51 |
-
|
52 |
-
encoding["embedding"] = model_output
|
53 |
|
54 |
-
return
|
55 |
-
|
56 |
-
|
57 |
-
def load(self, checkpoint="bart-2908.pickle"):
|
58 |
-
"""
|
59 |
-
inputs :
|
60 |
-
checkpoint (pickle object)
|
61 |
-
"""
|
62 |
|
|
|
63 |
self.tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
|
64 |
self.model = AutoModel.from_pretrained("ibm/materials.selfies-ted")
|
65 |
-
|
66 |
-
with open(checkpoint, "rb") as input_file:
|
67 |
-
self.model, self.tokenizer = pickle.load(input_file)
|
68 |
-
for p in sys.path:
|
69 |
-
file = p + "/" + checkpoint
|
70 |
-
if os.path.isfile(file):
|
71 |
-
with open(file, "rb") as input_file:
|
72 |
-
self.model, self.tokenizer = pickle.load(input_file)"""
|
73 |
|
|
|
|
|
|
|
74 |
|
|
|
|
|
75 |
|
|
|
76 |
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
selfies_df = pd.DataFrame(selfies,columns=["selfies"])
|
86 |
-
data = Dataset.from_pandas(selfies_df)
|
87 |
-
embedding = data.map(self.get_embedding, batched=True, num_proc=1, batch_size=128)
|
88 |
-
emb = np.asarray(embedding["embedding"].copy())
|
89 |
|
90 |
for idx in self.invalid:
|
91 |
emb[idx] = np.nan
|
92 |
-
print("Cannot encode {
|
93 |
|
94 |
-
if return_tensor
|
95 |
-
return torch.tensor(emb)
|
96 |
-
return pd.DataFrame(emb)
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
import selfies as sf
|
|
|
|
|
3 |
import numpy as np
|
4 |
+
import pandas as pd
|
5 |
from rdkit import Chem
|
6 |
from transformers import AutoTokenizer, AutoModel
|
7 |
+
import gc
|
8 |
+
from torch.utils.data import DataLoader, Dataset
|
9 |
+
from multiprocessing import Pool, cpu_count
|
10 |
+
from tqdm import tqdm
|
11 |
|
12 |
+
import os
|
13 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
|
|
|
15 |
|
16 |
+
class SELFIESDataset(Dataset):
|
17 |
+
def __init__(self, selfies_list):
|
18 |
+
self.selfies = selfies_list
|
19 |
+
|
20 |
+
def __len__(self):
|
21 |
+
return len(self.selfies)
|
22 |
+
|
23 |
+
def __getitem__(self, idx):
|
24 |
+
return self.selfies[idx]
|
25 |
+
|
26 |
+
class SELFIES(torch.nn.Module):
|
27 |
def __init__(self):
|
28 |
super().__init__()
|
29 |
self.model = None
|
30 |
self.tokenizer = None
|
31 |
self.invalid = []
|
32 |
|
33 |
+
def smiles_to_selfies(self, smiles):
|
34 |
+
try:
|
35 |
+
return sf.encoder(smiles.strip()).replace('][', '] [')
|
36 |
+
except:
|
37 |
try:
|
38 |
+
smiles = Chem.MolToSmiles(Chem.MolFromSmiles(smiles.strip()))
|
39 |
+
return sf.encoder(smiles).replace('][', '] [')
|
40 |
except:
|
41 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
def get_selfies(self, smiles_list):
|
44 |
+
with Pool(cpu_count()) as pool:
|
45 |
+
selfies = list(pool.map(self.smiles_to_selfies, smiles_list))
|
46 |
+
|
47 |
+
self.invalid = [i for i, s in enumerate(selfies) if s is None]
|
48 |
+
selfies = [s if s is not None else '[nop]' for s in selfies]
|
49 |
+
return selfies
|
50 |
+
|
51 |
+
@torch.no_grad()
|
52 |
+
def get_embedding_batch(self, selfies_batch):
|
53 |
+
encodings = self.tokenizer(
|
54 |
+
selfies_batch,
|
55 |
+
return_tensors='pt',
|
56 |
+
max_length=128,
|
57 |
+
truncation=True,
|
58 |
+
padding='max_length'
|
59 |
+
)
|
60 |
+
encodings = {k: v.to(self.model.device) for k, v in encodings.items()}
|
61 |
+
|
62 |
+
outputs = self.model.encoder(
|
63 |
+
input_ids=encodings['input_ids'],
|
64 |
+
attention_mask=encodings['attention_mask']
|
65 |
+
)
|
66 |
|
|
|
|
|
|
|
|
|
|
|
67 |
model_output = outputs.last_hidden_state
|
68 |
+
input_mask_expanded = encodings['attention_mask'].unsqueeze(-1).expand(model_output.size()).float()
|
|
|
69 |
sum_embeddings = torch.sum(model_output * input_mask_expanded, 1)
|
70 |
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
71 |
+
pooled_output = sum_embeddings / sum_mask
|
|
|
|
|
72 |
|
73 |
+
return pooled_output.cpu().numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
def load(self, checkpoint=None):
|
76 |
self.tokenizer = AutoTokenizer.from_pretrained("ibm/materials.selfies-ted")
|
77 |
self.model = AutoModel.from_pretrained("ibm/materials.selfies-ted")
|
78 |
+
self.model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
def encode(self, smiles_list=[], use_gpu=False, return_tensor=False, batch_size=128, num_workers=4):
|
81 |
+
selfies = self.get_selfies(smiles_list)
|
82 |
+
dataset = SELFIESDataset(selfies)
|
83 |
|
84 |
+
device = torch.device("cuda" if use_gpu and torch.cuda.is_available() else "cpu")
|
85 |
+
self.model.to(device)
|
86 |
|
87 |
+
loader = DataLoader(dataset, batch_size=batch_size, num_workers=num_workers)
|
88 |
|
89 |
+
embeddings = []
|
90 |
+
for batch in tqdm(loader, desc="Encoding"):
|
91 |
+
emb = self.get_embedding_batch(batch)
|
92 |
+
embeddings.append(emb)
|
93 |
+
del emb
|
94 |
+
gc.collect()
|
95 |
+
|
96 |
+
emb = np.vstack(embeddings)
|
|
|
|
|
|
|
|
|
97 |
|
98 |
for idx in self.invalid:
|
99 |
emb[idx] = np.nan
|
100 |
+
print(f"Cannot encode {smiles_list[idx]} to selfies. Embedding replaced by NaN.")
|
101 |
|
102 |
+
return torch.tensor(emb) if return_tensor else pd.DataFrame(emb)
|
|
|
|