blumenstiel commited on
Commit
44bb0fe
·
1 Parent(s): 6eb11be

Updated demo

Browse files
app.py CHANGED
@@ -10,7 +10,7 @@ from functools import partial
10
  from huggingface_hub import hf_hub_download
11
  from terratorch.cli_tools import LightningInferenceModel
12
 
13
- # pull files from hub
14
  token = os.environ.get("HF_TOKEN", None)
15
  config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars",
16
  filename="burn_scars_config.yaml", token=token)
@@ -97,10 +97,9 @@ def predict_on_images(data_file: str | Path, config_path: str, checkpoint: str):
97
 
98
  lightning_model.model.eval()
99
 
100
- channels = [config_dict['data']['init_args']['bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
101
 
102
- pred = run_model(input_data, temporal_coords, location_coords,
103
- lightning_model.model, lightning_model.datamodule, img_size)
104
 
105
  if input_data.mean() < 1:
106
  input_data = input_data * 10000 # Scale to 0-10000
@@ -153,7 +152,7 @@ Some example images are provided at the end of this page.
153
  predicted = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
154
  overlay = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
155
 
156
- gr.Markdown(value='\* White = burned; Black = no burned')
157
 
158
  btn.click(fn=run_inference,
159
  inputs=inp_file,
@@ -162,7 +161,7 @@ Some example images are provided at the end of this page.
162
  with gr.Row():
163
  gr.Examples(examples=[
164
  os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SEH.2018190.v1.4_merged.tif"),
165
- os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SFF.2018190.v1.4_merged.tif"),
166
  os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SGF.2020217.v1.4_merged.tif")],
167
  inputs=inp_file,
168
  outputs=[original] + [predicted] + [overlay],
 
10
  from huggingface_hub import hf_hub_download
11
  from terratorch.cli_tools import LightningInferenceModel
12
 
13
+ # pull files from hub-
14
  token = os.environ.get("HF_TOKEN", None)
15
  config_path = hf_hub_download(repo_id="ibm-nasa-geospatial/Prithvi-EO-2.0-300M-BurnScars",
16
  filename="burn_scars_config.yaml", token=token)
 
97
 
98
  lightning_model.model.eval()
99
 
100
+ channels = [config_dict['data']['init_args']['output_bands'].index(b) for b in ["RED", "GREEN", "BLUE"]] # BGR -> RGB
101
 
102
+ pred = run_model(input_data, lightning_model.model, lightning_model.datamodule, img_size)
 
103
 
104
  if input_data.mean() < 1:
105
  input_data = input_data * 10000 # Scale to 0-10000
 
152
  predicted = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
153
  overlay = gr.Image(image_mode='RGB', show_label=False, show_fullscreen_button=False)
154
 
155
+ gr.Markdown(value='\* White = burned; Black = not burned')
156
 
157
  btn.click(fn=run_inference,
158
  inputs=inp_file,
 
161
  with gr.Row():
162
  gr.Examples(examples=[
163
  os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SEH.2018190.v1.4_merged.tif"),
164
+ os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SFH.2018185.v1.4_merged.tif"),
165
  os.path.join(os.path.dirname(__file__), "examples/subsetted_512x512_HLS.S30.T10SGF.2020217.v1.4_merged.tif")],
166
  inputs=inp_file,
167
  outputs=[original] + [predicted] + [overlay],
examples/{subsetted_512x512_HLS.S30.T10SFF.2018190.v1.4_merged.tif → subsetted_512x512_HLS.S30.T10SFH.2018185.v1.4_merged.tif} RENAMED
File without changes