"""Template Demo for IBM Granite Hugging Face spaces.""" from collections.abc import Iterator from datetime import datetime from pathlib import Path from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from themes.research_monochrome import theme today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. Today's Date: {today_date}. You are Granite, developed by IBM. You are a helpful AI assistant""" TITLE = "IBM Granite 3.1 8b Instruct" DESCRIPTION = """

Granite 3.1 8b instruct is an open-source LLM supporting a 128k context window. Start with one of the sample prompts or enter your own. Keep in mind that AI can occasionally make mistakes. View Documentation

""" MAX_INPUT_TOKEN_LENGTH = 128_000 MAX_NEW_TOKENS = 1024 TEMPERATURE = 0.7 TOP_P = 0.85 TOP_K = 50 REPETITION_PENALTY = 1.05 if not torch.cuda.is_available(): print("This demo may not work on CPU.") model = AutoModelForCausalLM.from_pretrained( "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") tokenizer.use_default_system_prompt = False @spaces.GPU def generate( message: str, chat_history: list[dict], temperature: float = TEMPERATURE, repetition_penalty: float = REPETITION_PENALTY, top_p: float = TOP_P, top_k: float = TOP_K, max_new_tokens: int = MAX_NEW_TOKENS, ) -> Iterator[str]: """Generate function for chat demo.""" # Build messages conversation = [] conversation.append({"role": "system", "content": SYS_PROMPT}) conversation += chat_history conversation.append({"role": "user", "content": message}) # Convert messages to prompt format input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH - max_new_tokens, ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) css_file_path = Path(Path(__file__).parent / "app.css") head_file_path = Path(Path(__file__).parent / "app_head.html") # advanced settings (displayed in Accordion) temperature_slider = gr.Slider( minimum=0, maximum=1.0, value=TEMPERATURE, step=0.1, label="Temperature", elem_classes=["gr_accordion_element"] ) top_p_slider = gr.Slider( minimum=0, maximum=1.0, value=TOP_P, step=0.05, label="Top P", elem_classes=["gr_accordion_element"] ) top_k_slider = gr.Slider( minimum=0, maximum=100, value=TOP_K, step=1, label="Top K", elem_classes=["gr_accordion_element"] ) repetition_penalty_slider = gr.Slider( minimum=0, maximum=2.0, value=REPETITION_PENALTY, step=0.05, label="Repetition Penalty", elem_classes=["gr_accordion_element"], ) max_new_tokens_slider = gr.Slider( minimum=1, maximum=2000, value=MAX_NEW_TOKENS, step=1, label="Max New Tokens", elem_classes=["gr_accordion_element"], ) chat_interface_accordion = gr.Accordion(label="Advanced Settings", open=False) with gr.Blocks(fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=theme, title=TITLE) as demo: gr.HTML(f"

{TITLE}

", elem_classes=["gr_title"]) gr.HTML(DESCRIPTION) chat_interface = gr.ChatInterface( fn=generate, examples=[ ["Explain the concept of quantum computing to someone with no background in physics or computer science."], ["What is OpenShift?"], ["What's the importance of low latency inference?"], ["Help me boost productivity habits."], [ """Explain the following code in a concise manner: ```java import java.util.ArrayList; import java.util.List; public class Main { public static void main(String[] args) { int[] arr = {1, 5, 3, 4, 2}; int diff = 3; List pairs = findPairs(arr, diff); for (Pair pair : pairs) { System.out.println(pair.x + " " + pair.y); } } public static List findPairs(int[] arr, int diff) { List pairs = new ArrayList<>(); for (int i = 0; i < arr.length; i++) { for (int j = i + 1; j < arr.length; j++) { if (Math.abs(arr[i] - arr[j]) < diff) { pairs.add(new Pair(arr[i], arr[j])); } } } return pairs; } } class Pair { int x; int y; public Pair(int x, int y) { this.x = x; this.y = y; } } ```""" ], [ """Generate a Java code block from the following explanation: The code in the Main class finds all pairs in an array whose absolute difference is less than a given value. The findPairs method takes two arguments: an array of integers and a difference value. It iterates over the array and compares each element to every other element in the array. If the absolute difference between the two elements is less than the difference value, a new Pair object is created and added to a list. The Pair class is a simple data structure that stores two integers. The main method creates an array of integers, initializes the difference value, and calls the findPairs method to find all pairs in the array. Finally, the code iterates over the list of pairs and prints each pair to the console.""" # noqa: E501 ], ], example_labels=[ "Explain quantum computing", "What is OpenShift?", "Importance of low latency inference", "Boosting productivity habits", "Explain and document your code", "Generate Java Code", ], cache_examples=False, type="messages", additional_inputs=[ temperature_slider, repetition_penalty_slider, top_p_slider, top_k_slider, max_new_tokens_slider, ], additional_inputs_accordion=chat_interface_accordion, ) if __name__ == "__main__": demo.queue().launch()