"""Template Demo for IBM Granite Hugging Face spaces.""" from collections.abc import Iterator from datetime import datetime from pathlib import Path from threading import Thread import gradio as gr import spaces import torch from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from themes.carbon import carbon_theme today_date = datetime.today().strftime("%B %-d, %Y") # noqa: DTZ002 SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. Today's Date: {today_date}. You are Granite, developed by IBM. You are a helpful AI assistant""" TITLE = "IBM Granite 3.1 8b Instruct" DESCRIPTION = "Try one of the sample prompts below or write your own. Remember, just like developers, \ AI models can make mistakes." MAX_INPUT_TOKEN_LENGTH = 128_000 MAX_NEW_TOKENS = 1024 TEMPERATURE = 0.7 TOP_P = 0.85 TOP_K = 50 REPETITION_PENALTY = 1.05 if not torch.cuda.is_available(): DESCRIPTION += "\nThis demo does not work on CPU." model = AutoModelForCausalLM.from_pretrained( "ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") tokenizer.use_default_system_prompt = False @spaces.GPU def generate(message: str, chat_history: list[dict]) -> Iterator[str]: """Generate function for chat demo.""" # Build messages conversation = [] conversation.append({"role": "system", "content": SYS_PROMPT}) conversation += chat_history conversation.append({"role": "user", "content": message}) # Convert messages to prompt format input_ids = tokenizer.apply_chat_template( conversation, return_tensors="pt", add_generation_prompt=True, truncation=True, max_length=MAX_INPUT_TOKEN_LENGTH, ) input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=MAX_NEW_TOKENS, do_sample=True, top_p=TOP_P, top_k=TOP_K, temperature=TEMPERATURE, num_beams=1, repetition_penalty=REPETITION_PENALTY, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) css_file_path = Path(Path(__file__).parent / "app.css") head_file_path = Path(Path(__file__).parent / "app_head.html") with gr.Blocks( fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=carbon_theme, title=TITLE ) as demo: gr.HTML( f"

{TITLE}

", elem_classes=["gr_title"], ) gr.HTML(DESCRIPTION) gr.HTML( value='View Documentation ', elem_classes=["gr_docs_link"], ) chat_interface = gr.ChatInterface( fn=generate, examples=[ ["Explain quantum computing"], ["What is OpenShift?"], ["Importance of low latency inference"], ["Boosting productivity habits"], ], cache_examples=False, type="messages", ) if __name__ == "__main__": demo.queue().launch()