|
"""Template Demo for IBM Granite Hugging Face spaces.""" |
|
|
|
from collections.abc import Iterator |
|
from datetime import datetime |
|
from pathlib import Path |
|
from threading import Thread |
|
|
|
import gradio as gr |
|
import spaces |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer |
|
|
|
from themes.carbon import carbon_theme |
|
|
|
today_date = datetime.today().strftime("%B %-d, %Y") |
|
|
|
SYS_PROMPT = f"""Knowledge Cutoff Date: April 2024. |
|
Today's Date: {today_date}. |
|
You are Granite, developed by IBM. You are a helpful AI assistant""" |
|
TITLE = "IBM Granite 3.1 8b Instruct" |
|
DESCRIPTION = "Try one of the sample prompts below or write your own. Remember, just like developers, \ |
|
AI models can make mistakes." |
|
MAX_INPUT_TOKEN_LENGTH = 128_000 |
|
MAX_NEW_TOKENS = 1024 |
|
TEMPERATURE = 0.7 |
|
TOP_P = 0.85 |
|
TOP_K = 50 |
|
REPETITION_PENALTY = 1.05 |
|
|
|
if not torch.cuda.is_available(): |
|
DESCRIPTION += "\nThis demo does not work on CPU." |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
"ibm-granite/granite-3.1-8b-instruct", torch_dtype=torch.float16, device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3.1-8b-instruct") |
|
tokenizer.use_default_system_prompt = False |
|
|
|
|
|
@spaces.GPU |
|
def generate(message: str, chat_history: list[dict]) -> Iterator[str]: |
|
"""Generate function for chat demo.""" |
|
|
|
conversation = [] |
|
conversation.append({"role": "system", "content": SYS_PROMPT}) |
|
conversation += chat_history |
|
conversation.append({"role": "user", "content": message}) |
|
|
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
conversation, |
|
return_tensors="pt", |
|
add_generation_prompt=True, |
|
truncation=True, |
|
max_length=MAX_INPUT_TOKEN_LENGTH, |
|
) |
|
|
|
input_ids = input_ids.to(model.device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=30.0, skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
{"input_ids": input_ids}, |
|
streamer=streamer, |
|
max_new_tokens=MAX_NEW_TOKENS, |
|
do_sample=True, |
|
top_p=TOP_P, |
|
top_k=TOP_K, |
|
temperature=TEMPERATURE, |
|
num_beams=1, |
|
repetition_penalty=REPETITION_PENALTY, |
|
) |
|
|
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
|
|
outputs = [] |
|
for text in streamer: |
|
outputs.append(text) |
|
yield "".join(outputs) |
|
|
|
|
|
css_file_path = Path(Path(__file__).parent / "app.css") |
|
head_file_path = Path(Path(__file__).parent / "app_head.html") |
|
|
|
|
|
with gr.Blocks( |
|
fill_height=True, css_paths=css_file_path, head_paths=head_file_path, theme=carbon_theme, title=TITLE |
|
) as demo: |
|
gr.HTML( |
|
f"<img src='https://www.ibm.com/granite/docs/images/granite-cubes-352x368.webp'/><h1>{TITLE}</h1>", |
|
elem_classes=["gr_title"], |
|
) |
|
gr.HTML(DESCRIPTION) |
|
gr.HTML( |
|
value='<a href="https://www.ibm.com/granite/docs/">View Documentation</a> <i class="fa fa-external-link"></i>', |
|
elem_classes=["gr_docs_link"], |
|
) |
|
chat_interface = gr.ChatInterface( |
|
fn=generate, |
|
examples=[ |
|
["Explain quantum computing"], |
|
["What is OpenShift?"], |
|
["Importance of low latency inference"], |
|
["Boosting productivity habits"], |
|
], |
|
cache_examples=False, |
|
type="messages", |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch() |
|
|