iamrobotbear commited on
Commit
d7bec20
·
1 Parent(s): 1107d28

get rid of dataframe as it was hugely broken

Browse files
Files changed (1) hide show
  1. app.py +11 -14
app.py CHANGED
@@ -9,7 +9,6 @@ import tensorflow as tf
9
  import tensorflow_hub as hub
10
  from sklearn.metrics.pairwise import cosine_similarity
11
 
12
-
13
  # Import logging module
14
  import logging
15
 
@@ -88,13 +87,13 @@ def process_images_and_statements(image):
88
  # Generate image caption for the uploaded image using git-large-r-textcaps
89
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
90
 
 
 
 
91
  # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
92
  weight_textual_similarity = 0.5
93
  weight_statement = 0.5
94
 
95
- # Initialize an empty DataFrame with column names
96
- results_df = pd.DataFrame(columns=['Statement', 'Textual Similarity Score', 'ITM Score', 'Final Combined Score'])
97
-
98
  # Loop through each predefined statement
99
  for statement in statements:
100
  # Compute textual similarity between caption and statement
@@ -106,18 +105,16 @@ def process_images_and_statements(image):
106
  # Combine the two scores using a weighted average
107
  final_score = (weight_textual_similarity * textual_similarity_score) + (weight_statement * itm_score_statement)
108
 
109
- # Append the result to the DataFrame
110
- results_df = results_df.append({
111
- 'Statement': statement,
112
- 'Textual Similarity Score': textual_similarity_score,
113
- 'ITM Score': itm_score_statement,
114
- 'Final Combined Score': final_score
115
- }, ignore_index=True)
116
 
117
  logging.info('Finished process_images_and_statements')
118
 
119
- # Convert DataFrame to a formatted string and return it
120
- output = results_df.to_string(index=False)
121
  return output
122
 
123
  # Gradio interface
@@ -125,4 +122,4 @@ image_input = gr.inputs.Image()
125
  output = gr.outputs.Textbox(label="Results")
126
 
127
  iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching")
128
- iface.launch()
 
9
  import tensorflow_hub as hub
10
  from sklearn.metrics.pairwise import cosine_similarity
11
 
 
12
  # Import logging module
13
  import logging
14
 
 
87
  # Generate image caption for the uploaded image using git-large-r-textcaps
88
  caption = generate_caption(git_processor_large_textcaps, git_model_large_textcaps, image)
89
 
90
+ # Initialize an empty list to store the results
91
+ results = []
92
+
93
  # Define weights for combining textual similarity score and image-statement ITM score (adjust as needed)
94
  weight_textual_similarity = 0.5
95
  weight_statement = 0.5
96
 
 
 
 
97
  # Loop through each predefined statement
98
  for statement in statements:
99
  # Compute textual similarity between caption and statement
 
105
  # Combine the two scores using a weighted average
106
  final_score = (weight_textual_similarity * textual_similarity_score) + (weight_statement * itm_score_statement)
107
 
108
+ # Store the result
109
+ result_text = (f'Textual similarity between caption ("{caption}") and statement ("{statement}") is {textual_similarity_score:.3f}\n'
110
+ f'The image-statement pair ("{statement}") is matched with a probability of {itm_score_statement:.3%}\n'
111
+ f'The final combined score is {final_score:.3%}')
112
+ results.append(result_text)
 
 
113
 
114
  logging.info('Finished process_images_and_statements')
115
 
116
+ # Combine the results and return them
117
+ output = "\n\n".join(results)
118
  return output
119
 
120
  # Gradio interface
 
122
  output = gr.outputs.Textbox(label="Results")
123
 
124
  iface = gr.Interface(fn=process_images_and_statements, inputs=image_input, outputs=output, title="Image Captioning and Image-Text Matching")
125
+ iface.launch()