Spaces:
Build error
Build error
...
Browse files- app.py +63 -9
- inference.py +0 -60
app.py
CHANGED
@@ -1,10 +1,60 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
pth_path = "model/G_70000.pth"
|
7 |
-
|
8 |
character_dict = {
|
9 |
"十香": 1,
|
10 |
"折纸": 2,
|
@@ -39,13 +89,17 @@ with app:
|
|
39 |
tmp = gr.Markdown("")
|
40 |
with gr.Tabs():
|
41 |
with gr.TabItem("Basic"):
|
42 |
-
with gr.
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
gr.HTML("""
|
50 |
<div style="text-align:center">
|
51 |
仅供学习交流,不可用于商业或非法用途
|
|
|
1 |
import gradio as gr
|
2 |
+
# import matplotlib.pyplot as plt
|
3 |
+
import logging
|
4 |
+
# logger = logging.getLogger(__name__)
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
import math
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from torch.nn import functional as F
|
11 |
+
from torch.utils.data import DataLoader
|
12 |
|
13 |
+
import commons
|
14 |
+
import utils
|
15 |
+
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
16 |
+
from models import SynthesizerTrn
|
17 |
+
from text.symbols import symbols
|
18 |
+
from text import text_to_sequence
|
19 |
+
import time
|
20 |
|
21 |
+
def get_text(text, hps):
|
22 |
+
# text_norm = requests.post("http://121.5.171.42:39001/texttosequence?text="+text).json()["text_norm"]
|
23 |
+
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
24 |
+
# print(hps.data.text_cleaners)
|
25 |
+
# print(text_norm)
|
26 |
+
if hps.data.add_blank:
|
27 |
+
text_norm = commons.intersperse(text_norm, 0)
|
28 |
+
text_norm = torch.LongTensor(text_norm)
|
29 |
+
return text_norm
|
30 |
+
|
31 |
+
def load_model(config_path, pth_path):
|
32 |
+
global dev, hps_ms, net_g
|
33 |
+
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
34 |
+
hps_ms = utils.get_hparams_from_file(config_path)
|
35 |
+
|
36 |
+
net_g = SynthesizerTrn(
|
37 |
+
len(symbols),
|
38 |
+
hps_ms.data.filter_length // 2 + 1,
|
39 |
+
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
40 |
+
**hps_ms.model).to(dev)
|
41 |
+
_ = net_g.eval()
|
42 |
+
_ = utils.load_checkpoint(pth_path, net_g)
|
43 |
+
|
44 |
+
return f"{pth_path}加载成功!"
|
45 |
+
|
46 |
+
def infer(c_id, text):
|
47 |
+
stn_tst = get_text(text, hps_ms)
|
48 |
+
with torch.no_grad():
|
49 |
+
x_tst = stn_tst.to(dev).unsqueeze(0)
|
50 |
+
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
51 |
+
sid = torch.LongTensor([c_id]).to(dev)
|
52 |
+
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
|
53 |
+
|
54 |
+
return audio
|
55 |
|
56 |
pth_path = "model/G_70000.pth"
|
57 |
+
config_path = "configs/config.json"
|
58 |
character_dict = {
|
59 |
"十香": 1,
|
60 |
"折纸": 2,
|
|
|
89 |
tmp = gr.Markdown("")
|
90 |
with gr.Tabs():
|
91 |
with gr.TabItem("Basic"):
|
92 |
+
with gr.Raw():
|
93 |
+
model_submit = gr.Button("加载/重载模型", variant="primary")
|
94 |
+
output_1 = gr.Markdown("")
|
95 |
+
with gr.Raw():
|
96 |
+
tts_input1 = gr.TextArea(
|
97 |
+
label="请输入文本(仅支持日语)", value="你好,世界!")
|
98 |
+
tts_input2 = gr.Dropdown(choices=[character_dict.keys], type="index",label="选择角色", optional=False)
|
99 |
+
tts_submit = gr.Button("用文本合成", variant="primary")
|
100 |
+
tts_output2 = gr.Audio(label="Output")
|
101 |
+
model_submit.click(load_model, [config_path, pth_path], [output_1])
|
102 |
+
tts_submit.click(infer, [tts_input2+1, tts_input1], [tts_output2])
|
103 |
gr.HTML("""
|
104 |
<div style="text-align:center">
|
105 |
仅供学习交流,不可用于商业或非法用途
|
inference.py
CHANGED
@@ -1,60 +0,0 @@
|
|
1 |
-
# import matplotlib.pyplot as plt
|
2 |
-
import logging
|
3 |
-
# logger = logging.getLogger(__name__)
|
4 |
-
import os
|
5 |
-
import json
|
6 |
-
import math
|
7 |
-
import torch
|
8 |
-
from torch import nn
|
9 |
-
from torch.nn import functional as F
|
10 |
-
from torch.utils.data import DataLoader
|
11 |
-
|
12 |
-
import commons
|
13 |
-
import utils
|
14 |
-
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
|
15 |
-
from models import SynthesizerTrn
|
16 |
-
from text.symbols import symbols
|
17 |
-
from text import text_to_sequence
|
18 |
-
import time
|
19 |
-
|
20 |
-
def get_text(text, hps):
|
21 |
-
# text_norm = requests.post("http://121.5.171.42:39001/texttosequence?text="+text).json()["text_norm"]
|
22 |
-
text_norm = text_to_sequence(text, hps.data.text_cleaners)
|
23 |
-
# print(hps.data.text_cleaners)
|
24 |
-
# print(text_norm)
|
25 |
-
if hps.data.add_blank:
|
26 |
-
text_norm = commons.intersperse(text_norm, 0)
|
27 |
-
text_norm = torch.LongTensor(text_norm)
|
28 |
-
return text_norm
|
29 |
-
|
30 |
-
def load_model(config_json, pth_path):
|
31 |
-
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
32 |
-
hps_ms = utils.get_hparams_from_file(f"./configs/{config_json}")
|
33 |
-
|
34 |
-
global net_g
|
35 |
-
net_g = SynthesizerTrn(
|
36 |
-
len(symbols),
|
37 |
-
hps_ms.data.filter_length // 2 + 1,
|
38 |
-
hps_ms.train.segment_size // hps_ms.data.hop_length,
|
39 |
-
**hps_ms.model).to(dev)
|
40 |
-
_ = net_g.eval()
|
41 |
-
_ = utils.load_checkpoint(pth_path, net_g)
|
42 |
-
|
43 |
-
print("load_model:"+pth_path)
|
44 |
-
return net_g
|
45 |
-
|
46 |
-
def local_run(c_id, text):
|
47 |
-
stn_tst = get_text(text, hps)
|
48 |
-
with torch.no_grad():
|
49 |
-
x_tst = stn_tst.to(dev).unsqueeze(0)
|
50 |
-
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev)
|
51 |
-
sid = torch.LongTensor([c_id]).to(dev)
|
52 |
-
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
|
53 |
-
|
54 |
-
return audio
|
55 |
-
|
56 |
-
CONFIG_FILE = "configs/config.json"
|
57 |
-
|
58 |
-
dev = torch.device("cpu")
|
59 |
-
hps = utils.get_hparams_from_file(CONFIG_FILE)
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|