Spaces:
Build error
Build error
# import matplotlib.pyplot as plt | |
import logging | |
# logger = logging.getLogger(__name__) | |
import os | |
import json | |
import math | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
from torch.utils.data import DataLoader | |
import commons | |
import utils | |
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate | |
from models import SynthesizerTrn | |
from text.symbols import symbols | |
from text import text_to_sequence | |
import time | |
def get_text(text, hps): | |
# text_norm = requests.post("http://121.5.171.42:39001/texttosequence?text="+text).json()["text_norm"] | |
text_norm = text_to_sequence(text, hps.data.text_cleaners) | |
# print(hps.data.text_cleaners) | |
# print(text_norm) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = torch.LongTensor(text_norm) | |
return text_norm | |
def load_model(config_json, pth_path): | |
dev = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
hps_ms = utils.get_hparams_from_file(f"./configs/{config_json}") | |
global net_g | |
net_g = SynthesizerTrn( | |
len(symbols), | |
hps_ms.data.filter_length // 2 + 1, | |
hps_ms.train.segment_size // hps_ms.data.hop_length, | |
**hps_ms.model).to(dev) | |
_ = net_g.eval() | |
_ = utils.load_checkpoint(pth_path, net_g) | |
print("load_model:"+pth_path) | |
return net_g | |
def local_run(c_id, text): | |
stn_tst = get_text(text, hps) | |
with torch.no_grad(): | |
x_tst = stn_tst.to(dev).unsqueeze(0) | |
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).to(dev) | |
sid = torch.LongTensor([c_id]).to(dev) | |
audio = net_g.infer(x_tst, x_tst_lengths, sid=sid, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy() | |
return audio | |
CONFIG_FILE = "configs/config.json" | |
dev = torch.device("cpu") | |
hps = utils.get_hparams_from_file(CONFIG_FILE) | |