Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,392 Bytes
9a5dc44 88b57b3 8f4ba14 9ca20bc 88b57b3 9a5dc44 9ca20bc 88b57b3 9ca20bc 9a5dc44 9ca20bc 8f4ba14 9ca20bc 8f4ba14 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 9ca20bc 8f4ba14 9ca20bc 8557d69 9ca20bc ef9ccc7 9ca20bc 9a5dc44 85f94cd 8f4ba14 85f94cd d818369 85f94cd 88b57b3 d818369 88b57b3 85f94cd 9ca20bc 85f94cd d818369 85f94cd 9ca20bc 85f94cd d818369 85f94cd d818369 85f94cd d818369 85f94cd 8f4ba14 85f94cd d818369 85f94cd d818369 85f94cd 8f4ba14 85f94cd d818369 85f94cd d818369 85f94cd 8f4ba14 85f94cd 9ca20bc 85f94cd 2423f10 85f94cd 9ca20bc 85f94cd d818369 85f94cd d818369 85f94cd 9ca20bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
#!/usr/bin/env python
import os
import pathlib
import shlex
import subprocess
import sys
import gradio as gr
import PIL.Image
import spaces
import torch
from diffusers import DPMSolverMultistepScheduler
if os.getenv("SYSTEM") == "spaces":
with pathlib.Path("patch").open() as f:
subprocess.run(shlex.split("patch -p1"), cwd="multires_textual_inversion", stdin=f, check=True) # noqa: S603
sys.path.insert(0, "multires_textual_inversion")
from pipeline import MultiResPipeline, load_learned_concepts # type: ignore
DESCRIPTION = "# [Multiresolution Textual Inversion](https://github.com/giannisdaras/multires_textual_inversion)"
DETAILS = """
- To run the Semi Resolution-Dependent sampler, use the format: `<jane(number)>`.
- To run the Fully Resolution-Dependent sampler, use the format: `<jane[number]>`.
- To run the Fixed Resolution sampler, use the format: `<jane|number|>`.
For this demo, only `<jane>`, `<gta5-artwork>` and `<cat-toy>` are available.
Also, `number` should be an integer in [0, 9].
"""
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "stable-diffusion-v1-5/stable-diffusion-v1-5"
if device.type == "cpu":
pipe = MultiResPipeline.from_pretrained(model_id)
else:
pipe = MultiResPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
prediction_type="epsilon",
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
string_to_param_dict = load_learned_concepts(pipe, "textual_inversion_outputs/")
for k, v in list(string_to_param_dict.items()):
string_to_param_dict[k] = v.to(device)
pipe.to(device)
pipe.text_encoder.to(device)
@spaces.GPU
def run(prompt: str, n_images: int, n_steps: int, seed: int) -> list[PIL.Image.Image]:
generator = torch.Generator(device=device).manual_seed(seed)
return pipe(
[prompt] * n_images,
string_to_param_dict,
num_inference_steps=n_steps,
generator=generator,
)
def process_example(prompt: str) -> list[PIL.Image.Image]:
return run(prompt, 2, 10, 100)
with gr.Blocks(css_paths="style.css") as demo:
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Group():
with gr.Row():
prompt = gr.Textbox(label="Prompt")
with gr.Row():
num_images = gr.Slider(
label="Number of images",
minimum=1,
maximum=9,
step=1,
value=1,
)
with gr.Row():
num_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=10,
)
with gr.Row():
seed = gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=100)
with gr.Row():
run_button = gr.Button()
with gr.Column():
result = gr.Gallery(label="Result", object_fit="scale-down")
with gr.Row():
with gr.Group():
with gr.Row():
gr.Examples(
label="Examples 1",
examples=[
["an image of <gta5-artwork(0)>"],
["an image of <jane(0)>"],
["an image of <jane(3)>"],
["an image of <cat-toy(0)>"],
],
inputs=prompt,
outputs=result,
fn=process_example,
)
with gr.Row():
gr.Examples(
label="Examples 2",
examples=[
["an image of a cat in the style of <gta5-artwork(0)>"],
["a painting of a dog in the style of <jane(0)>"],
["a painting of a dog in the style of <jane(5)>"],
["a painting of a <cat-toy(0)> in the style of <jane(3)>"],
],
inputs=prompt,
outputs=result,
fn=process_example,
)
with gr.Row():
gr.Examples(
label="Examples 3",
examples=[
["an image of <jane[0]>"],
["an image of <jane|0|>"],
["an image of <jane|3|>"],
],
inputs=prompt,
outputs=result,
fn=process_example,
)
inputs = [
prompt,
num_images,
num_steps,
seed,
]
prompt.submit(
fn=run,
inputs=inputs,
outputs=result,
api_name=False,
)
run_button.click(
fn=run,
inputs=inputs,
outputs=result,
api_name="run",
)
with gr.Accordion("About available prompts", open=False):
gr.Markdown(DETAILS)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
|