Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,714 Bytes
9a5dc44 85f94cd 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 2df1835 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 9a5dc44 d818369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
from __future__ import annotations
import os
import shlex
import subprocess
import sys
import PIL.Image
import torch
from diffusers import DPMSolverMultistepScheduler
if os.getenv("SYSTEM") == "spaces":
with open("patch") as f:
subprocess.run(shlex.split("patch -p1"), cwd="multires_textual_inversion", stdin=f)
sys.path.insert(0, "multires_textual_inversion")
from pipeline import MultiResPipeline, load_learned_concepts
class Model:
def __init__(self):
self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model_id = "runwayml/stable-diffusion-v1-5"
if self.device.type == "cpu":
pipe = MultiResPipeline.from_pretrained(model_id)
else:
pipe = MultiResPipeline.from_pretrained(model_id, torch_dtype=torch.float16, revision="fp16")
self.pipe = pipe.to(self.device)
self.pipe.scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
self.string_to_param_dict = load_learned_concepts(self.pipe, "textual_inversion_outputs/")
def run(self, prompt: str, n_images: int, n_steps: int, seed: int) -> list[PIL.Image.Image]:
generator = torch.Generator(device=self.device).manual_seed(seed)
return self.pipe(
[prompt] * n_images, self.string_to_param_dict, num_inference_steps=n_steps, generator=generator
)
|