File size: 4,091 Bytes
9a5dc44
 
 
 
 
 
 
 
85f94cd
 
 
 
9a5dc44
 
 
 
 
 
 
 
 
 
941e5d8
 
9a5dc44
85f94cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a5dc44
85f94cd
 
 
 
9a5dc44
85f94cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
#!/usr/bin/env python

from __future__ import annotations

import gradio as gr

from model import Model

DESCRIPTION = '''# Multiresolution Textual Inversion

An unofficial demo for [https://github.com/giannisdaras/multires_textual_inversion](https://github.com/giannisdaras/multires_textual_inversion).
'''

DETAILS = '''
- To run the Semi Resolution-Dependent sampler, use the format: `<jane(number)>`.
- To run the Fully Resolution-Dependent sampler, use the format: `<jane[number]>`.
- To run the Fixed Resolution sampler, use the format: `<jane|number|>`.

For this demo, only `<jane>`, `<gta5-artwork>` and `<cat-toy>` are available.
Also, `number` should be an integer in [0, 9].
'''

#CACHE_EXAMPLES = os.getenv('SYSTEM') == 'spaces'
CACHE_EXAMPLES = False

model = Model()

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(DESCRIPTION)

    with gr.Row():
        with gr.Group():
            with gr.Row():
                prompt = gr.Textbox(label='Prompt')
            with gr.Row():
                num_images = gr.Slider(1,
                                       9,
                                       value=1,
                                       step=1,
                                       label='Number of images')
            with gr.Row():
                num_steps = gr.Slider(1,
                                      50,
                                      value=10,
                                      step=1,
                                      label='Number of inference steps')
            with gr.Row():
                seed = gr.Slider(0, 100000, value=100, step=1, label='Seed')
            with gr.Row():
                run_button = gr.Button('Run')

        with gr.Column():
            result = gr.Gallery(label='Result')

    with gr.Row():
        with gr.Group():
            fn = lambda x: model.run(x, 2, 10, 100)
            with gr.Row():
                gr.Examples(
                    label='Examples 1',
                    examples=[
                        ['an image of <gta5-artwork(0)>'],
                        ['an image of <jane(0)>'],
                        ['an image of <jane(3)>'],
                        ['an image of <cat-toy(0)>'],
                    ],
                    inputs=prompt,
                    outputs=result,
                    fn=fn,
                    cache_examples=CACHE_EXAMPLES,
                )
            with gr.Row():
                gr.Examples(
                    label='Examples 2',
                    examples=[
                        [
                            'an image of a cat in the style of <gta5-artwork(0)>'
                        ],
                        ['a painting of a dog in the style of <jane(0)>'],
                        ['a painting of a dog in the style of <jane(5)>'],
                        [
                            'a painting of a <cat-toy(0)> in the style of <jane(3)>'
                        ],
                    ],
                    inputs=prompt,
                    outputs=result,
                    fn=fn,
                    cache_examples=CACHE_EXAMPLES,
                )
            with gr.Row():
                gr.Examples(
                    label='Examples 3',
                    examples=[
                        ['an image of <jane[0]>'],
                        ['an image of <jane|0|>'],
                        ['an image of <jane|3|>'],
                    ],
                    inputs=prompt,
                    outputs=result,
                    fn=fn,
                    cache_examples=CACHE_EXAMPLES,
                )

        inputs = [
            prompt,
            num_images,
            num_steps,
            seed,
        ]
        prompt.submit(
            fn=model.run,
            inputs=inputs,
            outputs=result,
        )
        run_button.click(
            fn=model.run,
            inputs=inputs,
            outputs=result,
        )

    with gr.Accordion('About available prompts', open=False):
        gr.Markdown(DETAILS)

demo.queue().launch(show_api=False)